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ABSTRACT

We discuss the analysis of Zeeman effect data in radio astronomy and in particular, extend previous
techniques to include the case of low signal-to-noise ratios. We consider three statistical techniques for
estimating the line-of-sight magnetic field: maximum likelihood, least-squares, and Wiener filters. For high
signal-to-noise ratios, all three estimators are essentially unbiased. In the poor to moderate signal-to-noise
ratio regime, we conclude that all three estimators are biased; the maximum likelihood technique yields results
that are, in general, substantially less biased than least-squares and Wiener filters. However, it is possible to
“debias” the least-squares results and obtain estimates that are as good as maximum likelihood under a

restricted set of conditions.

Subject headings: magnetic fields — radio sources: general — Zeeman effect

1. INTRODUCTION

The Zeeman effect provides a direct method for measur-
ing the strength of a magnetic field that permeates a gas. The
splitting of spectral lines (in emission or absorption), in the
weak field case, is proportional to the magnetic field strength.
This relatively simple principle has induced many to use the
Zeeman effect as a probe of astrophysical magnetic fields
(e.g., Verschuur 1969; Troland and Heiles 1986, and refer-
ences therein).

In this paper, we discuss statistical methods by which the
magnetic field strength can be estimated from Zeeman data.
However, we will not be concerned in any detail with instru-
mental effects (see Troland and Heiles 1982, and references
therein), which should always be carefully analyzed before
Zeeman data is interpreted. Nor will we discuss any inherent
ambiguities in the astrophysical interpretation of Zeeman
data.

In general, Zeeman experiments have been in the regime
of very high signal-to-noise ratio total intensity spectral lines
(e.g., Kazes and Crutcher 1986); in this case, the analysis
with least squares is fairly straightforward. However, this is
the only statistical estimator that has been considered in the
literature up to this time. In this paper we investigate analy-
sis techniques for the low signal-to-noise ratio case. We show
that the linear least-squares and Wiener filter techniques
lead to badly biased results, and that the maximum likeli-
hood approach is superior (although still biased) in this
regime. We also find that under certain restricted conditions,
it is possible to “debias” the least-squares estimate to pro-
duce results that compare favorably with maximum likeli-
hood. In addition we show that for high signal-to-noise
ratios, all three of these estimators are unbiased. Finally, we
consider the effects of spectral and spatial correlations of the
noise and suggest methods with which to deal with them.

This paper is organized as follows. In § II we introduce
the basic equations which describe the response of a radio

telescope to the Zeeman split lines. In § III we discuss
statistical estimation of the Zeeman splitting. These methods
are then applied to simulated data in § IV for evaluation,
and we summarize our findings in § V. Detailed treatment of
the statistical methods summarized in § III is described in
the appendices.

II. RADIO OBSERVATIONS OF THE ZEEMAN EFFECT

a) The Zeeman Effect

The Zeeman effect is the splitting of spectral lines into
multiple components because of the application of an exter-
nal magnetic field which removes degeneracies in atomic or
molecular quantum levels (e.g., Townes and Schawlow 1975).
In principle, the Zeeman pattern of lines can become rather
complicated. However, in practice, a simple triplet pattern
(one unsplit and two split components) is generally all that is
necessary to consider when making astrophysical measure-
ments. Although each of the triplet lines may really consist
of a group of closely spaced lines (e.g., the 1667 MHz OH
line), the spacing is generally substantially below the spectral
resolution of the observation for typical astrophysical mag-
netic field strengths.

Of fundamental importance to Zeeman experiments are
the polarization characteristics of the lines. The split lines
are circularly and oppositely polarized, the electric vectors
rotating in the plane perpendicular to the magnetic field
direction. The unsplit line is linearly polarized in the direc-
tion of the field. Thus, when observed along the field, the
unsplit line is not detected and the split lines are completely
circularly polarized. When observed in the direction perpen-
dicular to the magnetic field, all three lines appear linearly
polarized; the unsplit line in the direction of the field, the
split lines perpendicular to the field. The general case of an
arbitrary viewing angle, of course, yields elliptical polariza-
tion for the split lines.
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b) Response of the Telescope

To find the response of a radio telescope to these three
lines, we assume that the telescope feeds are circularly and
oppositely polarized, and we denote their responses by I,
and I_. A similar analysis could be carried out for linearly
polarized feeds. By considering the power radiated per unit
solid angle into a given direction and polarization by each
line (e.g., Jackson 1975, p. 396) one can show that

I, (v)=1[(cos 8 +1)*Iy(v + év)
4 (cos 8 F1)21y(v — 8v) +2sin 01,(v)], (2.1)

where 6 is the angle between the magnetic field and the line
of sight, év is the frequency shift between the split and
unsplit lines, and [(v) is the Stokes I=(I,_+ I_)/2 (total
intensity) spectrum in the case that §v =0. The first two
terms arise from the circularly polarized split lines, and the
third component is contributed by the unsplit linearly polar-
ized line. Clearly, the latter component is the same for each
feed. It is also evident from equation (2.1) that the response
of, say, the I, feed to the circularly polarized line repre-
sented by the first term, is maximum for 6 = 0, and zero for
6 = 180°.

i) Large Splitting

If the splitting was large enough that all three Zeeman
components were well-separated, then the total magnetic
field strength could be obtained from the measured separa-
tion of the split components. In addition, the angle § could
be obtained from the ratio, y, of the intensities of either of
the split components in each of the circularly polarized
feeds. For example, for the range of » corresponding to the
first split component (assuming positive 8v),

_ I.(v) _ (cos 8 +1)*I(v + 6v)
YTI() T (cos 0 —1)21(v + 8v)

(cos 6 +1)*
(cos 6 —1)*’

from which it follows that

—(1+y)+2(y)"?

cos 8 1—y
An ideal, noiseless, large splitting case is demonstrated in
the upper panel of Figure 1 in which 26w is 5 times the line
FWHM of 40 channels (note we measure all spectra widths
or dimensions in channels). In addition, 8 = 45° so that the
split lines are elliptically polarized and appear in both feeds.
The splitting is obviously recovered correctly by direct mea-
surement and for either the 7, or I_ profiles, we measure
vy = 33.97 from which 8 = 45° is recovered.
The large splitting case is often applicable to masers.
However, in practice, it is rare that all three lines are
observed because of depolarizing effects (e.g., Goldreich,
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Fic. 1.—Simulated large (upper panel) and small (lower panel) split-
ting cases. I, is a single Gaussian, and there is no noise. Each panel
shows I, (dashed line) and I_ (dot-dashed line) spectra for a magnetic
field at 45° to the line of sight. In addition, the resultant V' spectrum
(solid line) is shown for the small splitting case.

Keeley, and Kwan 1973; Lo et al. 1975), so that measurement
of @ is generally not possible.

i) Small Splitting

Many astrophysical Zeeman experiments are not so well-
endowed as to fall into the large splitting case. In the lower
panel of Figure 1, we illustrate a case where the three lines
of the Zeeman pattern blend together in each feed. Clearly,
neither B nor cos # is directly measureable, and we are
forced to use a less direct method to extract them. From
equation (2.1), it is straightforward to show that the Stokes
V=(,—1_)/2 spectrum is

V(vy=1%cos O] Io(v + dv) — (v —v)]. (2.2)

Before proceeding, we add (as is usual) a leakage term to
equation (2.2). This term might arise from at least two
effects; the leakage of linear polarization into circular polar-
ization, and beam squint (Troland and Heiles 1982). Each
effect results in a replica of I appearing in V. For beam
squint, the primary beams for the oppositely polarized feeds
are offset on the sky by a small fraction of the primary beam
width. The effect for a single dish can be rather insidious; a
suitably pathological source velocity structure can induce a
false Zeeman profile (Troland and Heiles 1982). However,
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for a synthesis array the effect is far less dangerous. This is

because squint is a primary, not a synthesised, beam effect. In
this case, at an instant in time, beam squint causes a gain
difference between the oppositely polarized feed responses.
It will be a function of distance from the pointing center
along the squint pattern direction. If there is no Zeeman
splitting, this causes a replica of the I spectrum to appear in
the V' spectrum, the strength of which increases from the
pointing center (until the primary beam tapers off).

We now make the fundamental assumption that the split-
ting, 8v, is small compared to the line width, which allows
the following three simplifications. First, the derivative of I
is a good approximation to the difference term in equation
(2.2); second, the inclusion of leakage in the manner de-
scribed above is approximately valid; and third, the unmea-
sured, unsplit spectrum, (), is adequately approximated by
the measured spectrum, I(v). Therefore, we can write equa-
tion (2.2) as

dI(v)
V(v)=6v cos 0 I + BI(v). (2.3)

Note that the év and cos 6 terms arise from different sources.
The 6v term arises from the difference term in equation
(2.2) and is directly related to the Zeeman effect. However,
the cos 6 term is a geometric factor that arises when consid-
ering the response of the feeds to polarized radiation. Thus,
although 8v and cos § combine mathematically to yield the
line-of-sight magnetic field, they arise from completely dif-
ferent considerations.

With the above assumptions, a technique is needed to
extract the desired quantities of equation (2.3) from the
observed V(v) and I(v) spectra. In the case of very high
signal-to-noise ratios and ignoring leakage, one could divide
V by dI/dv and find 8v cos  as a function of » (e.g.,
Schwarz eral. 1986). Alternatively, as is usually done,
8v cos 6 is extracted by computing df /dv and fitting it to
the V spectrum (e.g., Crutcher, Kazes, and Troland 1987).

In the following section, we discuss methods for fitting the
numerically computed derivative of the I spectrum to the I
spectrum in order to extract év cos 6 and f.

III. ANALYSIS TECHNIQUES

a) Some Preliminaries

First, we specify some notation that we use throughout the
rest of this paper. A quantity that has a carat is the true
value of that quantity. For example, I(v) is the true Stokes I
spectrum that would be measured with a perfect, noiseless
receiving system. A quantity with the subscript “est” is a
statistical estimate of that quantity. For example, /.(v) is an
estimate of [(v), the true spectrum. A quantity with the
subscript “obs,” is the observed value of that quantity. For
example, I ;(v) is the observed Stokes I spectrum. If we do
not distinguish a quantity by carats or subscripts such as
these, then we are referring to it in a generic sense. For
example, I(v) could mean any of the specific types of the
Stokes I spectrum; the context will make which one clear.
The quantities that will be subject to this notation in the
following sections are I(v), V(v), @, and B.
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We rewrite equation (2.3) as

. dl .,
V=a—+pI, (3.1)
dv

where V and I are the true, noiseless spectra, and @ and ﬁ
are the true splitting and leakage terms. In reality, only the
n01sy measurements [, and V¢ are available. Three tech-
niques for extracting estimates of & and B are considered
below: least-squares, maximum likelihood, and Wiener filter.
All three techniques minimize a sum of squares, though the
techniques differ in the actual form of the sum, and their
theoretical justification. The estimates produced by each of
these techniques has some expected value and standard
deviation. These are denoted by &.q,0,2, etc. For an unbi-
ased estimator, the expected value will be the true value, and
the standard deviation is a measure of the error in the
estimate. Unfortunately we will see that all three estimators
are biased at sufficiently low signal-to-noise ratios.

We require an estimate of the derivative of the I spec-
trum. We use either the simple one- or two-sided numerical
derivatives given by

dI,
g; ~(L;—1_y),

and

d; 1
oF '2‘(1i+1_ I;_y).

Note that when [ is noisy, then the noise variance in the
two-sided derivative is one-fourth that in the one-sided
derivative. Hence we would expect the two-sided derivative
to cope better when the signal-to-noise ratio is poor. On the
other hand, the two-sided derivative is less accurate at sharp
edges or for narrow lines.

Generally it is the signal-to-noise ratio in the derivative of
I (rather than [ itself) which is of importance. We define 7,
a measure of signal-to-noise ratio in the derivative spectra,

as '
1 Ve 1(dl
fi=— 'I"S=—(—) : (3.2)
o a oldv ) .
Here 17,",§ and (df / dv),,, are the rms values of the noiseless

V and dI /dv spectra.

In this paper, the terms “summing” and ‘““averaging” are
used with quite distinct meanings. It is important to distin-
guish between them. All the techniques discussed sum an
error measure. This summation can be performed in both
the spectral dimension and/or the two spatial dimensions.
Note that « and B are assumed constant in this summing
region. Provided the region is sufficiently small, this is a good
approximation. However, in poor signal-to-noise ratio cases,
there is a trade-off between this approximation and summing
over a region large enough to gain sufficient signal. Needless
to say, in some instances, there is insufficient signal and
coherence in « to achieve meaningful results.
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Spatial summing of the error measure is quite distinct
from averaging spectra from several spatial locations and
then passing the averaged spectrum to the estimation algo-
rithms. Averaging spectra implicitly assumes that the shapes
of the spectra are the same, whereas spatial summing does
not. Generally, it is preferable to avoid averaging.

The summations in this paper should strictly be repre-
sented by triple sums (the spectral dimension and the two
spatial dimensions). However, for brevity, we use only one
summation symbol, with the understanding that extension to
the more general case is moderately straightforward. We
usually assume we are summing over N data points.

In developing analysis techniques for cases of poor signal-
to-noise ratio, attention must be paid to the properties of the
noise processes present. We assume that the characteristics
of the noise processes in the 7, and I_ spectra are identi-
cal, and in particular, that they are zero mean Gaussian
noise. Although we assume the noise is uncorrelated be-
tween the I, and I_ spectra, we allow the noise to be
correlated between channels and pixels (i.e., along the spec-
tral and spatial dimensions). Thus, as with the summations,
the autocorrelation function of the noise process varies over
three dimensions. We express it as a function of a single
index, with the understanding that extension is possible. Let
the autocorrelation function for the 7, spectra be 202r,(i),
where the noise variance is 202 That is, r,(i) is the correla-
tion coefficient for two points i elements apart. Under these
assumptions, the noise processes in the I and V, spectra are
also zero mean Gaussian noise. The noise between [ and V
is uncorrelated, though there is a correlation between chan-
nels and pixels, with autocorrelation function o 2r,(i).

All these assumptions are accurate characterlzatlons of
the noise processes that occur in radio observations. If ther-
mal noise in the receiver is the dominant noise source, we
expect Gaussian noise. Because the I, and I_ receivers are
independent (or the same receiver but switched in time), the
noise is uncorrelated. The assumption that the noise pro-
cesses in the two receivers have identical variances is gener-
ally a good approximation. This is especially true in the case
of synthesis telescopes, since the I, spectra at a given
spatial location contain contributions from many indepen-
dent receivers. The correlation between frequency channels
is determined by the telescope spectrometer and the on-line
data gathering software. For example, the spectra may be
Hanning smoothed on-line, which introduces correlations
between otherwise independent frequency channels in a pre-
dictable fashion. Consequently, we can often derive the
channel-to-channel autocorrelation function purely by con-
sidering the telescope characteristics and observing mode.
For a synthesis array, the correlation along the spatial di-
mensions is proportional to the autocorrelation of the syn-
thesized beam, which in turn is determined by the array
geometry and the imaging software. Generally the autocorre-
lation function in the spectral dimension is separable from
the two spatial dimensions. Thus, the spectral and spatial
autocorrelation functions are usually computable from the
characteristics of the observation. If this is not possible, the
autocorrelation can be determined by finding the numerical
autocorrelation in signal-free regions. At the least, this is a
good check.
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b) Summary of Definitions

To summarize, we observe Stokes I and V' spectra, I,
and V,,, which are noisy versions of the true spectra I and
V. The spectra are of length N channels and the variance of
the noise is o2 The true splitting parameter is & channels,
and our aim is to find an estimate of this, a .. We allow Vi,
to be corrupted by a factor B of I A parameter. giving the
signal-to-noise ratio of the rms value of the [ derivative
spectrum is defined as = o~ dl /dv),

¢) Statistical Estimators

i) Least Squares

Least squares is a simple technique which finds those
values of « and B which minimize

2

dIbs ;7
g2 = Z(Vobs,i_a ; . "ﬁlobs,i) -
14

i

It deals neither with any correlations nor with the noise
processes themselves so that the justification for doing this is
intuitive rather than theoretical. The primary advantage of
this technique (over the others discussed) is that it is compu-
tationally cheap and easy, requiring calculation of some
inner products (see Appendix A for details). When the
signal-to-noise ratio is high, the variance in the uncertainty
of the least-squares estimate is given by (see Appendix A)

af,
2l

This equation requires the values of [ or @ and V. In
practice, we use I,. A serious disadvantage of least squares
is that the estimate of & is biased. By this we mean that the
expected value of a. (that is, the average of an. infinite

2 &%0?

ZV2 (3.3)

number of trials of the same experiment) is not &. More
specifically (see Appendix A), the expected value is

_ a

Gest = T gp 2" (34)

where a =2 or 1/2 for the one- and two-sided derivatives,
respectively. This equation assumes that N is large, and that
the data are spectrally uncorrelated (this assumption is re-
laxed in Appendix A). The quantity 4 is a measure of the
signal-to-noise ratio in the derivative spectra. So as the
signal-to-noise in the derivative spectra decreases, the bias
increases. If the error variance given in equation (3.3) is
calculated using I, then it too will be biased by exactly the
same factor.

If we are given o2, then we can partially remove the bias
from the equations used to estimate @. That is, we can
“debias” the least-squares estimate. This is discussed further
in § IVe and Appendix A.

ii) Maximum Likelihood

The maximum likelihood principle (Jeffreys 1939; Parratt
1961) is a general guiding principle for developing algorithms
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to extract parameters from noisy or random data. For maxi-
mum likelihood techniques, a probability density function is
derived in terms of the experimentally measured quantities
and the unknown parameters. This density function ex-
presses the probability of obtaining the experimental results
for given values of the unknown parameters. The maximum
likelihood principle states that we choose, as our solution,
those parameters which maximize the probability density
function.

One should not confuse maximum likelihood techniques
with least-squares techniques. The maximum likelihood prin-
ciple is far more general than least squares. However, in
special cases they are identical. One such case occurs when
the independent variables are noiseless and the dependent
variable is corrupted by uncorrelated Gaussian noise. This is
not the case with the Zeeman fitting problem, as the “inde-
pendent variables” (the I spectra) are noisy. Thus the maxi-
mum likelihood and least-squares solutions are distinct in
our case.

For clarity of exposition, we give only an outline here. In
addition, we assume that the noise processes are totally
uncorrelated. More detailed analysis (including the corre-
lated noise case) is given in Appendix B. The desired proba-
bility density function is proportional to

2
exp( X ), (3.5)
2
where
2 1 2 2
X =?[ani+ZnV‘]. (36)
i i

With the use of equation (3.1), the noise processes, n, and
ny, can be given in terms of the measured quantities and the
unknowns &, B, and I:

A

np=Igps—1,

~

i .,
nVZI/;bs_V=V;)bs_aAE—BI' (3.7)

Thus, combining equations (3.6) and (3.7) yields

2

al, ..
+ 1 Vobs,,.—c?—dv'—ﬁl,- . (3.8)
]

The maximum likelihood estimates for &, é, and [ are those
that minimize x?, and are denoted by .y, By, and I,g. The
minimization is a nonlinear problem, and Appendix B gives
details of an algorithm to solve this. This minimization must
be treated with some caution. Multiple minima are possible
and, indeed, do occur when the signal-to-noise ratio is poor.
In these cases there is often a spurious minimum close to
a=0.

ANALYSIS OF ZEEMAN EFFECT DATA 441

It can be shown that if either @ and /§ or [ are known, the
maximum likelihood technique leads to an unbiased estimate
of the remaining unknowns. However, when none of these
are known, the maximum likelihood technique proves to be
biased if the signal-to-noise ratio is poor. Because of the
nonlinear nature of the problem, an expression for the bias
has not been derived; we have determined it for certain cases
through numerical simulation (see § IV).

A measure of o, the uncertainty of a., is as important
as the estimation itself. We can derive this quantity by
observing how quickly y? varies with a near the minimum
(see Press etal. 1986, and references therein). This tech-
nique is valid, provided that the signal-to-noise ratio is high
enough so that x? is essentially parabolic within the range
@y + 0,. The expression for o, is given by (see Appendix B)

1 d?

—1
o7 = Eﬁ[xz(a,ﬁa,fa)] , (3.9)

where B, and I, are those values of 8 and I which mini-
mize x? (as defined in eq. [3.8]) for a given value of a. The
second derivative in this expression is evaluated at ag.
Some arguments indicate that, as the signal-to-noise ratio
increases, the second derivative in equation (3.9) approaches
the second partial derivative of y? with respect to a. This
leads to an explicit expression of o, for high signal-to-noise

ratios:
dl . :\°
2.2 obs, i
2o / lz(—dv )

This is the same error variance as the least-squares algorithm
(eq. [3.3]D. When the signal-to-noise is moderate to poor, it is
better to determine the second derivative by fitting a parabola
to x*(a, B,, I,) (Appendix B). When the signal-to-noise ratio
is quite poor, these methods underestimate o,,.

We now consider briefly the case where the noise is
correlated. As discussed in Appendix B, the estimated values
of &, B, and I vary little if we do a full treatment of the
correlation, or if we simply ignore it. However, the value of
o, is significantly affected. A full treatment is unattractive
for a number of reasons, so two alternate schemes will be
considered. The first alternative is to perform several simula-
tions of the estimation of &, using different trials of the
noise. The variation of « in the simulations is then used as
an estimate of the formal error. This approach was used by
Tan and Gull (1985) for a similar problem. A second ap-
proach is to ignore correlation when solving for @ and B, but
to include the effects of correlation when estimating the
formal errors. These approaches are considered further
in § IV.

iii) Wiener Filters

Wiener filters are a general technique for obtaining con-
servative estimates of a signal, given a distorted and noisy
version of it (e.g., Davenport and Root 1958). For simplicity
we ignore leakage and sum along the spectral dimension
only. The Wiener filter approach assumes the signals, as well
as the noise, can be modeled as stochastic processes. Let the
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autocorrelation function of the I spectrum be r,(i). We
formulate our problem as that of finding linear operators
(filters), which, given the noisy I, and V,,, data, form an
estimate of the noiseless /. These filters are chosen so that
the expected value of the error between the true and esti-
mated value of 7 is minimized. Specifically, we find filters 4,
and A, which minimize

E[(f"(h[ * Lops + hV * I/Obs))Z] ’

where “ *” represents convolution. Once this is achieved, we
can use a least-squares algorithm to determine an estimate
of @ from the estimate for I and V. This leads to an
iterative algorithm, because we must know o to determine
the filters. It can be shown that the Fourier transforms of the
optimum Wiener filters are given by

1
Hl= 2 E 2 ’
1+a2D*D +o?R, /R,

H aD*
Y 1+a’D*D+0?R, /R,’

where R, and R, are the power spectra corresponding to
autocorrelation functions r, and r;, and D is the Fourier
transform of the derivative operator.

The advantage of this algorithm is that it allows simpler
treatment of correlation of the noise processes. In addition,
it adds information about the autocorrelation of the signal.
Even though we do not know the autocorrelation of I, we
generally believe I is a “smooth” function. We can add this
a priori information by using, for the I spectra autocorrela-
tion function, a Gaussian whose width is typical of widths of
features in the I spectra.

Wiener filters are intended to give conservative, rather
than unbiased, estimates. Indeed, as the signal-to-noise ratio
approaches zero, the Wiener filter estimate of I will also
approach zero. This leads to the estimate of & being biased
on the high side.

IV. EVALUATION OF TECHNIQUES

In this section, we use numerical simulation to examine
the performance of the estimators discussed in § III and the
appendices. Since we cannot duplicate the infinite variety of
line profiles encountered in astronomy, we content ourselves
with the Gaussian. Therefore, all our tests were conducted
with a single line of Gaussian shape and should yield indica-
tive results. Independent noise in the I, spectra was gener-
ated by summing 12 samples from a uniform random number
generator (Park and Miller 1988). According to the central
limit theorem, this sum approximates a Gaussian random
variable. Unless explicitly stated, our tests did not involve a
leakage term nor any correlation of the noise. Finally, all
quantities which express a spectral width (e.g., the splitting «
and line FWHM) are given in units of channels.

The large computations were carried out on the Cray-2
running UNICOS at the National Center for Supercomput-
ing Applications in Champaign-Urbana, Illinois. Smaller
trials were undertaken on the Astronomy Department
microVAX running VMS at the University of Illinois.
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FiG. 2.—Percentage error in a, vs. the ratio of the splitting to the
line FWHM for the maximum likelihood method and a noiseless,
well-sampled line. Both the “observed” I and the “unobserved,” unsplit
I, spectra are shown.

a) Breakdown of the Small 8v Approximation

We first establish the regime in which the fundamental
small splitting assumption is valid. Figure 2 shows the per-
centage error in a., versus @ /P (& is the line FWHM).
The noiseless line is well-sampled with & = 40 channels. We
show the results from both the unsplit I, and split I spectra,
although in practice, only the I spectrum is actually mea-
sured. From Figure 2 we see the small §v assumption fail in
two ways. First, even if the I, spectrum is used, the result
begins to deteriorate significantly at @ / ® = 0.1 because the
assumption that I(v + 6v)— Io(v — év) = 26v(dl, / dv) fails
(see § II). Second, additional error is incurred because the
assumption that I = I also becomes poor.

This test was conducted with the maximum likelihood
technique and a one-sided derivative. However, the position
of the breakdown point does not depend significantly on
either of these choices. This is because the line is noiseless
(see § IVc) and well-sampled (see § IVb).

In summary, the small splitting assumption is valid only
when the condition &/ ® <0.1 is satisfied. This result is
subject to some variation depending on the actual line shape,
but should be indicative.

b) The Effect of Sampling

We investigate the effect of sampling on a noiseless line
with the one- and two-sided derivatives. We choose @ / ® =
0.025 so that the small splitting assumption is satisfied.
Figure 3 displays the percentage error in a., versus @ for
the maximum likelihood technique. Examination of Figure 3
suggests that a minimum of ® = 10 channels is necessary to
obtain a representative derivative of the line and that the
two-sided derivative makes a larger error (as expected) when
the sampling is poor. This result is also subject to some
variation depending on the actual line shape.

¢) The Bias in the Estimators

Having established the conditions that satisfy the small
splitting and good sampling criteria, we now compare each
statistical method to evaluate their relative biases. Appen-
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mum likelihood method, and a noiseless line (small splitting criterion
satisfied). Both the one- and two-sided derivatives are shown.

dices A and B give more detailed discussion on the source of
such biases.

For the least-squares technique, @, (the expected value
of the estimate of &) is given by a simple formula (eq. [3.4]).
We define the bias by

—a —a
= - (4.1)

a A+a’

where, as before, a is 2 or 1/2 for the one- and two-sided
derivatives, respectlvely, and 1 is the rms signal-to-noise
ratio (see eq. [3.2]) in the df /dv spectrum. Unfortunately,
an expression such as equation (4.1) cannot be derived for
the maximum likelihood or Wiener filter methods (see Ap-
pendix B). Therefore we start with a specific case and com-
pare all three estimators. We choose &/ ® = 0.025 (small
splitting satisfied), a well-sampled line (® =30), and the
number of channels N =128, so that all channels effectively
contain signal.

The solid dots on the upper panel of Figure 4 show the
percentage errors in d. as a function of 7 (as the least-
squares bias error is a function of #) for each of our
estimators. For the maximum likelihood and least-squares
techniques, the results obtained with both the one- and
two-sided derivatives are shown (labeled “1” and “2”). Each
point on the plot is the average of 2000 different trials (i.e.,
the I, spectra were computed 2000 times with the same
noise variance, but different and independent noise samples).
For least squares, the solid lines generated from equation
(4.1) verify that experiment and theory are in excellent
agreement for the least-squares technique. The dash and
dot-dash lines just join up the points for the maximum
likelihood and Wiener filter methods. It is evident that all
the estimators are unbiased for large 7 but that they all
become progressively more biased as 7 decreases. Clearly
the maximum likelihood estimate is the least biased, with the
least squares and Wiener filter approaches about equally and
oppositely biased for small 7.

The upper panel of Figure 4 also shows that one-sided
derivative provides a more biased estimate than the two-sided
derivative for noisy data (when the small splitting and good
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sampling criteria are met). This is because the two-sided
derivative provides a less noisy estimate of df /dv.

The errors for the mean estimates are small (a few percent
at the most) compared with the bias, so that it is a true bias,
not just a statistical fluctuation in the mean. This is true of
all the simulations that we present below so that errors in
the mean estimates will not be discussed further.

In the upper panel of Figure 4, we plotted the abcissa as
7. However, this is not a directly observable quantity because
it is noiseless. It can be shown that 4 is related to its noisy
equivalent by

£ 5 3

Thus, the lower panel of Figure 4 redisplays the bias in @,
as a function of n (determined by eq. [4.2]) for the two-sided
derivative results. In an actual observation, one would esti-
mate n from the I, spectrum (eq. [4.2] would not hold
exactly because there would be only one trial of the noise).
Note that n=va for the case of pure noise so that the
points bunch up at the low signal-to-noise end of the plot
(we have also excluded the highest signal-to-noise ratio point
of the upper panel in the lower panel). Although Figure 4
illustrates a special case, the maximum likelihood estimate
should always be less biased than that of least-squares (see
Appendix B).

Further least-squares simulations, varying N from 40 to
200, and & from 0.1 to 2, show that the bias is in good
agreement with equation (3.4). Because we have no expres-
sion for the maximum likelihood function bias, we determine
its dependence on & and N numerically. Hence, Figure 5
illustrates the percentage error in a., for the two-sided
derivative maximum likelihood technique for various values
of &. For reference, the least-squares bias curve is also
shown. Again, the abcissa is shown as either 7 (upper panel)
or 71 (lower panel). We have varied the number of noise trials
in order to keep the relative error in a., small. Hence, for
@ =2,1.25, and 0.75 we used 500, 1300, and 3500 trials of the
noise, respectively. It is computationally prohlbltlve to inves-
tigate thoroughly significantly smaller values of & in this
manner. We would need some 2X10° trials of the I,
spectra for @ =0.1. Even with the Cray-2, this is a huge
computational load. Thus, we have computed just four points
for &= 0.1, but with only 10* trials. The curve is therefore
noisier, but should still be representative. We used N =160
and @ =40, so that the small splitting and good sampling
criteria are met.

From Figure 5 it is clear that the bias decreases with
increasing @. This trend should continue until the small
splitting criterion fails. We believe that as & approaches
zero, the maximum likelihood bias converges to the least-
squares bias curve. However, we do not have the computa-
tional resources at this time to investigate values of & that
are orders of magnitude lower. Thus, we must be content
that the trend from the trials we do have, is in the correct
sense for this convergence.

The variation of the percentage error in a., with the
number of channels for the two-sided derivative maximum
likelihood method is displayed in Figure 6a. Again, we plot

dl . \*
obs, ) ]=ﬁ2+a. (4.2)
dv
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spectrum of a line for which ® =30, @ = 0.75, and N =128. The least-squares, maximum likelihood, and Wiener filter results are all shown. For the
upper panel, both two- and one-sided derivative results are shown; the solid lines are the theoretical least-squares curves (eq. [4.1]), and the dash and
dot-dash lines just join up the points. For the lower panel, just two-sided derivative results are shown.

the abcissa as 7 (upper panel) and n (lower panel), and the
four curves correspond to N =160, 120, 80, and 40. In
addition, for this test, we use @ /P = 0.025 (small splitting
satisfied), ® =20 channels (good sampling satisfied), and
5000 trials. For N =80, essentially all of each spectrum
contains signal. For N = 40, not all of the line is included in
the spectra, and for N =160, the first and last 40 channels
contain essentially noise. Fairly clearly, there is only a weak
dependence of the maximum likelihood bias on the number
of channels, within the range we have examined.

If one considers a single spectrum and just adds more and
more noise channels, then 7 will decrease, and one moves
obliquely from curve to curve on Figure 6a. This is presented
slightly differently in Figure 65, where we show the two-sided
derivative maximum likelihood and least-squares bias versus
the number of channels for the particular case of ® =20,
& =05, and a constant noise variance. When N > 80, the
additional channels contain essentially only noise because
@ = 20. In addition, we label each point on the plot with its

value of #. This plot emphasizes the weak dependence of
maximum likelihood on the number of channels and the
need to exclude all noise channels when applying the least-
squares technique.

For line shapes other than Gaussians, we find that the
least-squares bias is still well-represented by equation (3.4).
However, the maximum likelihood bias appears to be a
function of line shape. We have found instances of the
maximum likelihood technique being biased high. The mag-
nitude of the bias, however, is of the same order, and the
break point in 7}, below which the estimate becomes signifi-
cantly biased, remains approximately constant.

We now include a small leakage term (B =0.05) and
examine the percentage error in By, as well as @.,. We
show only the maximum likelihood results in Figure 7 for
&/®=0.025 ®&=40, N =160, and 1000 trials of the noise.
The leakage was included in a somewhat ad hoc manner by
simply adding a fraction of the noiseless I spectrum into the
noisy V, rather than computing the relevant quantities in the
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Fic. 5.—Percentage error in @, from the maximum likelihood method (two-sided derivative) vs. the noiseless (upper panel) and noisy (lower panel)
rms signal-to-noise ratio in the I derivative spectrum of a line for which & = 40, N =160, and the splitting is varied. For & = 2.0, 1.25, 0.75, and 0.1 the
number of noise trials was 500, 1300, 3500, and 10000 in order to keep the relative error roughly constant from curve to curve. The least-squares curve is

shown for reference.

I, spectra (this would also affect I). However, for small
leakages, these factors are fairly unimportant. This plot is
interesting because B, remains unbiased even when &, is
significantly wrong. Although we have not shown it, least
squares also extracts an essentially unbiased value of B, for
small leakage terms.

As a special case, we examine the maximum likelihood
and least-squares results for & =0. According to equation
(3.4) and Appendices A and B, the expected value of a.g
should be zero for both techniques. This is verified by Figure
8, which shows the average results for 500 trials of the noise.

The main conclusion that can be drawn from this section
is that one can obtain an essentially unbiased estimate of @
and B with the maximum likelihood method, for n as low as
about unity if @ > 0.1. For smaller values of &, this lower
limit for n will increase, but we cannot say how rapidly. For
the least-squares method, it is necessary that n > 10 in order
that the estimate be essentially unbiased; there is no depen-
dence on ¢ in this case. We have not thoroughly investigated

the Wiener filter method. However, initial results indicate
that for small values of 7, it is as biased (but in the opposite
sense) as least squares.

d) The Effect of Noise on the Shape of x*

We have shown that the maximum likelihood estimate
becomes biased as the signal-to-noise ratio decreases. Al-
though our algorithm (see Appendix B) always finds the
global minimum of x2, that minimum is not always at @y =
a, owing to the presence of error in its estimate of I. To give
a qualitative feel for this, Figure 9 shows a normalized x? as
a function of « for six different values of & /o,. As usual,
the line is well-sampled (® =40 and N =160) and satisfies
the small splitting criterion with & = 1.0. Clearly, in the top
three cases, the global minimum is at the correct value,
a = a. However, in the bottom three cases, the wrong solu-
tion is obtained. It should be noted that the same samples of
the random noise were used in generating each of these
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the noise.

plots, so that as the signal-to-noise ratio decreases, the same
spurious feature grows until it dominates the location of the
minimum.

It is also instructive to examine a few trials of the noise
with the same value of & /a,. Figure 10 shows nine trials for
the case of & /o, =4.3 and the other parameters as before.
We see that the global minimum is in roughly the correct
place for six of the cases. For the remaining three cases (fop
center, bottom left, bottom right) the answer is clearly wrong
and the bias is such that there are more wrong results on the
low side than the high.

e) Debiasing Least Squares

In § IVc above we showed that maximum likelihood makes
superior estimates of & compared to least squares. However,
it is possible to partially debias the least-squares estimate
(see Appendix A). This is not true of maximum likelihood.
Thus, before we dismiss least squares as inferior to maximum
likelihood, we must compare the debiased least-squares re-

sults with those of maximum likelihood. Debiasing should be
used with caution, as any error in the value of o2 used in the
debiasing will cause the bias to be incompletely removed. In
the simulations that are presented in this section, we have
“cheated,” in that we know the exact value of o2.

First we reexamine the cases demonstrated in Figure 4, for
the two-sided derivative. The mean debiased least-squares
estimate from 2000 trials is shown in Figure 1la, together
with the maximum likelihood and biased least-squares re-
sults. The lower panel excludes the five lowest 7 points from
the upper panel for greater clarity. Once again recall that,
while the least-squares bias is independent of &, this is not
so with maximum likelihood. The least-squares curves are
universal, but the maximum likelihood curve is dependent on
a as well as 7. This plot is an indication that the mean
debiased least-squares estimate is essentially as good as the
maximum likelihood result when # > 1. Below this point, the
debiased least-squares result rapidly deteriorates. Note that
debiasing extends the range in which an unbiased least-
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squares estimated of & can be obtained by approximately an
order of magnitude.

Further simulations (varying & from 0.1 to 2, N from 40 to
200, and line shape) show that @, is essentially independent
of & and N, for # > 1. This is not true for 1 <1.

We conclude our discussion of debiased least squares by
examining some distributions of a.y and comparing them to
those of maximum likelihood. It is pointless to debias a
least-squares estimate if the error variance of the estimate
would be much larger than that of maximum likelihood. The
results of the appendices indicate that the debiased least-
squares and maximum likelihood techniques should have
approximately the same variance. Let us examine a case
where 7 =1.0; this is about the limit below which both
maximum likelihood and debiased least squares fail. We
examine distributions for & =1.0 and 0.1, choose ® = 40,
N =160, and use the two-sided derivative. Two thousand
trials of the noise were used.

Figure 115 shows histograms of the distributions of the
percentage error in a.y. The top panels are for @ = 1.0, and
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Fic. 9.—Normalized y? for the maximum likelihood method (two-sided derivative) vs. a as the signal-to-noise ratio (& /o,) varies from infinity to
unity. The line has @ =1.0, ® =40, and N = 160. The same samples of the random noise were used for each plot, so that as & /o, decreases, the same
spurious feature grows until it dominates the location of the minimum.
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&/o,=43,a=10, % =40, and N =160."

the bottom panels are for & =0.1. Each panel shows the
results for least-squares, debiased least-squares and maxi-
mum likelihood. For the case of & =1.0, Figure 115 shows
that not only does least-squares yield a wrong result (mean is
—32%), there is little probability of obtaining the correct
result. The debiased least-squares shows a distribution which
is clearly no longer biased, and the standard deviation is
small, so reliable estimation is possible. The maximum likeli-
hood distribution is only modestly better than the debiased
least squares. There is little to choose between the maximum
likelihood and debiased least-squares distributions.

We now turn to the lower panels of Figure 115, where
& = 0.1. The biases show negligible change, but the widths of
the percentage error distributions have increased. The de-
biased least-squares and maximum likelihood distributions
are essentially indistinguishable.

In summary, debiased least-squares and maximum likeli-
hood yield comparable results until % is lower than about

unity. Below this value, one obtains more reliable (but still
biased) estimates with maximum likelihood.

f) The Reliability of the Error Estimates

i) Uncertainty in o

We have demonstrated so far that in a fairly well-defined
part of parameter space, we can extract unbiased estimates
of @ and B. Unfortunately, in practice, we only get one
chance to estimate these parameters, so we must have a
good estimate of the uncertainties or our results are useless.
We investigate the reliability of our error estimates for the
maximum likelihood method with two representative cases in
Figure 12. The upper and lower rows of panels are for a
moderately good and a poor signal-to-noise ratio case. As
usual, we make sure the small splitting and good sampling
criteria are well met (4 =1.0 and ® = 40). In addition, we
use N =160 and the two-sided derivative.
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Consider first the good signal-to-noise ratio case shown in
the upper row. The leftmost panel shows typical I, and
dl . /dv spectra, and we give (in the top left corner) the
signal-to-noise ratio parameter 7 = 2.6 (see eq. [3.2]). Refer-
ring to Figures 4 and 5, we see that in this case the estimate
of & should be virtually unbiased. The second and third
panels show histograms of the percentage error of a., and
the estimated standard deviation of e, (as a percentage of
@) from 1000 trials of the noise. Both the standard deviation
of the distribution for a.y and the mean of the distribution
for o, are 3.1%.

We now turn to the lower row of panels in Figure 12, a
case of greater noise corruption such that 7 =0.5. The
experimental standard deviation of the distribution for a., is
21.2%. The mean of the distribution of the estimated per-
centage standard deviations is 15.3%. In general, it appears
that for poor signal-to-noise ratios, the error estimate seems
to be biased low.

ii) Uncertainty in B

We must also examine our error estimates for the leakage
parameter B. Thus, Figure 13, in the manner of Figure 12,
shows representative spectra (I, and V,, in this case) and
histograms of the B., and estimated op distributions from
1000 trials of the noise. The actual leakage term is 5%. We
see that the standard deviation of the distribution for B is
in good agreement with the mean of the distribution for oy
in both the moderate and poor signal-to-noise ratio cases, so
that we are confident in our ability to supply meaningful
error estimates for B.

In summary, we can supply good estimates of the standard
error in a., when the estimate of & is not biased. As
becomes more biased, so does the error estimate, and in the
same sense. We have not explored large leakage terms, but
for small leakages, the estimated standard error in B is
reliable.
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Fic. 11.—(a) Percentage error in @, (from 2000 trials) vs. the noiseless rms signal-to-noise ratio in the I derivative spectrum of a line for which
® =30, &=0.75, and N =128. The two-sided derivative least-squares, debiased least-squares, and maximum likelihood results are shown. The lower
panel excludes the five noisiest points for debiased least-squares. (b) Comparison between least-squares, debiased least-squares, and maximum
likelihood distributions of the percentage error in a.y from 2000 trials of the noise for a line in which & =40, N =160, and 7 =1.0. In the upper
panels, @ =1.0, while in the lower panels &=0.1. From left to right, the panels are for the least-squares, debiased least-squares, and maximum

likelihood techniques, respectively.
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g) The Effect of Spatial and Spectral Correlations

This section considers the effects of correlated noise on
the maximum likelihood algorithm; the theory is discussed in
Appendix B. Basically, noise correlation has little effect on
the estimates of @ and B, but has a significant effect when
determining the uncertainty associated with these parame-
ters. Noise correlation effects depend strongly on the auto-
correlation functions, and so general results cannot be ob-
tained. Rather we present results of some simulations which
should be indicative. Two sets of simulations are discussed,
one with a high and one with a moderate signal-to-noise
ratio. All tests summed over 128 channels by 20 pixels, and
used 100 trials of the noise.

Four cases of noise correlation are considered: no correla-
tion, spectral correlation only, spatial correlation only, and
both spectral and spatial correlation. The spectral correla-
tion is such that there is only correlation between adjacent
channels, for which the correlation coefficient is 1/6. This is
the form of correlation which occurs if the spectral dimen-
sion is 3-point Hanning smoothed, and then every second
channel is discarded. (This choice was motivated by such a
correlation being present in some of our data.) The spatial
correlation is that caused by a sinc-shaped beam, with FWHM
of 4 pixels. To generate noise with the appropriate correla-
tions, we convolved Gaussian independent noise. In doing
so, we padded with extra noise samples (the number deter-
mined by the width of the convolving function) to avoid edge
effects.

Three techniques for dealing with correlation are consid-
ered: full noise correlation treatment, partial treatment, and
a simulation approach. By full treatment, we mean that the
covariance matrix was included at all stages of the estimation
algorithm (see Appendix B). We have not developed code to
perform this full treatment when there is spatial correlation,
and so we do not present results in these cases. The partial
treatment approach ignores correlation in determining esti-
mates of &, ﬁ, and f, but correctly includes it when deter-
mining o,. The third approach, simulation, simply measures
the standard deviation in .y, when the experiment is simu-
lated many times, with different trials of the noise.

The first result of the simulations is that the estimated
values of & for the full and partial treatments agree closely.

Vol. 74

Typically they do not differ by more than o, /10. Thus, to
good approximation, we can ignore the effects of noise in
estimating &.

However, we cannot ignore correlation when estimating
the standard error of the estimate. Tables 1 (high signal-to-
noise ratio) and 2 (moderate signal-to-noise ratio) give the
estimate of o, (expressed as a percentage of &) for the three
techniques and for different forms of noise correlation. In
the case of a high signal-to-noise ratio, the agreement be-
tween the estimated error, for the full and partial treat-
ments, agrees well with the actual variation of a., seen in
the simulations. However, the agreement is poorer when the
signal-to-noise ratio is moderate. In particular, the agree-
ment when there is spatial correlation, is quite poor. Here
the estimated o, differs from that observed in the simula-
tions by almost a factor of 2. Standard error estimates are
consistently lower than the results of simulation. The bias
seems to be more pronounced when correlations are present,
particularly spatial correlations. We believe this is caused by
the error in I . In calculating error estimates for the corre-
lated noise, this error can be amplified by the matrix opera-
tions involved. This is particularly true of spatial correlation,
because the matrices involved are inevitably ill-conditioned
(see Appendix B for more details). Indeed, we find error
estimates that are grossly incorrect when the following three
conditions are all satisfied: the signal-to-noise ratio is poor,
spatial summing is being performed over a large region (5X5
pixels or greater), and the effect of spatial correlation is
included in the error analysis.

When summing over large spatial regions, the true o, is
probably no more than a factor of 2—6 times larger than the
value of o, that would be calculated assuming no spatial
correlation. This factor will be a function of the source
structure and beam size and shape. When a better estimate
of o, is needed, simulations of the estimation process can
provide better bounds.

V. SUMMARY

We have evaluated the performance of three statistical
methods in the analysis of Zeeman effect radio astronomical
data: maximum likelihood, least-squares, and Wiener filters.
We now summarize our findings, which are based upon

TABLE 1
ErrFecTs oF Noise CORRELATION ON a,: HIGH SIGNAL-TO-NOISE CASE
Correlation Full Treatment  Corrected o,  Simulation
No correlation.........................L 0.36% 0.36% 0.36%
Spectral correlation ................... 0.39% 0.39% 0.41%
Spatial correlation ..................... 0.47% 0.50%
Spectral and spatial correlation ....... 0.54% 0.60%
TABLE 2
EFrrecTs oF Noise CORRELATION ON 0,: MODERATE SIGNAL-TO-NOISE CASE
Correlation Full Treatment  Corrected o,  Simulation
No correlation................cooueu. 2.6% 2.6% 3.2%
Spectral correlation ................... 2.8% 2.8% 3.4%
Spatial correlation ..................... o 3.2% 52%
Spectral and Spatial Correlation ...... 3.3% 6.1%
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numerical simulations with a single Gaussian line. These
conclusions, although indicative, are of course subject to
some fluctuation depending on the details of the line shape.
We then suggest a recipe which should lead to a good
estimate, if it can be made, of the splitting. The reader may
wish to review the definitions of symbols, which are summa-
rized in § IIIb.

a) Conclusions

We assume that the first two items in the following list are
satisfied for all succeeding items. We find the following:

1. The fundamental Zeeman analysis equation (eq. [3.1])
rests upon the assumption that the splitting is small. The
latter assumption requires that & /® < 0.1 be approximately
satisfied (recall that ® is the line FWHM, measured in
channels). Unfortunately, the observer has no control over
this ratio.

2. To obtain a good numerical derivative, the line must be
well-sampled. This requires that the condition ® >10 be
approximately satisfied.

3. The estimators we have investigated are biased when
the signal-to-noise ratio is poor (4 <1 for maximum likeli-
hood, % <10 for least squares). The maximum likelihood
method is the least biased, and therefore preferable. The
only disadvantage of the maximum likelihood technique is
that it is computationally more expensive and requires more
coding effort.

Least-squares is the simplest technique in all regards, and
it is possible to write down an expression for the bias in the
least-squares estimate of the splitting. Thus, debiasing least
squares is also a computationally attractive alternative. How-
ever, you must have a good estimate of the noise variance,
o2, in order to do this successfully. Accurately debiased least
squares provides unbiased results for 7 > 1, the same range
as for maximum likelihood.

4. If the splitting is constant (or approximately constant)
over a region (both spectral and spatial), then the data for
this entire region should be input to the estimation process
to form a single set of estimates.of the parameters. This
leads to estimates with lower variances and is distinct, and
preferable, to averaging the data before the estimation pro-
cess. However, if the signal-to-noise ratio is poor (i.e., bias is
a concern), then averaging might be required as a last resort.

5. The choice of derivative is dictated by conflicting re-
quirements. If you are close to the limit of good sampling
(® =~ 10), then the one-sided derivative is preferable. If the
signal-to-noise ratio is poor and the line is reasonably well
sampled, then the two-sided derivative is less biased.

6. Small leakage terms are extracted essentially unbiased
by both least squares and maximum likelihood.

7. For both maximum likelihood and least squares, we can
produce reliable standard error estimates for « when a. is
unbiased. As 7 decreases and «.;, becomes progressively
more biased, so do the estimates of the standard error in
@y Both least squares and maximum likelihood make reli-
able estimates of the standard error in B for small leakage
terms.

8. The effects of noise correlation must be considered
when determining the error in the estimate of &; the esti-
mate of @ itself is only weakly dependent on such correla-
tions. Although correlations should be calculable from the
characteristics of the observation, they can also be tested for
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by computing the autocorrelation function of a signal-free
region. The maximum likelihood algorithm can handle spec-
tral correlations, or spatial correlations in cases of good
signal-to-noise ratios. In other instances, or for the least-
squares technique, simulation is the best approach in deter-
mining error estimates.

b) Recommended Recipe for Success

Finally, we suggest a procedure which should lead to a
good estimate of & if there is sufficient signal to do so:

1. Ensure that the good sampling criterion is met.

2. Decide upon choice of derivative, remembering the
trade-off between good sampling (use one-sided if close to
the limit) and noisy data (use two-sided if well-sampled).

3. Select the region (spatial and spectral) of the data that
contains the signal of interest, and over which you are
assuming the splitting is constant. Then estimate 7 (using

eq. [4.2]: 5
1 dl s
nz—\/N_IZ(#) ,
o : dv

A?=n’—a.
Here a=2 or 1/2 for the one- and two-sided derivatives,
respectively (assuming uncorrelated noise). If you are sum-
ming in the spatial as well as in the spectral dimension, then
the sum is extended to the spatial dimensions as well (and N
is the number of channels in each spectrum times the num-
ber of spectra).

4. Having computed 4, consider three regimes. (a) If
71> 10, then all estimators are unbiased. The choice of
maximum likelihood or least squares is largely a matter of
convenience in this case; least squares is much easier to
implement and less computationally intensive. (b) If 1 <7 <
10, then maximum likelihood yields essentially unbiased re-
sults (with the caveat that we have not explored very small
values of &). Alternatively, one could use debiased least
squares. (¢) If 7 <1, then the estimate is biased no matter
what estimator you use. There are two solutions. Either try
to improve the signal-to-noise ratio by averaging spectra (this
means that the spectral structure must be similar in the
averaged spectra), or, better, get more data.

5. Both spatial and spectral correlations can be ignored
when estimating &, but the standard error estimates depend
significantly on the correlations. The maximum likelihood
algorithm can provide good error estimates for high signal-
to-noise ratios, but, for noisy data, the recommended tech-
nique for evaluating the effect of spatial correlations on the
errors is by simulation. One can determine if spectral corre-
lations exist by empirically computing the autocorrelation
function of a signal-free spectrum or by knowledge of the
characteristics of the observation.

6. Check the results for self-consistency by making sure
that .y, /P <0.1. This is the small splitting assumption.
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APPENDIX A
THE LEAST-SQUARES TECHNIQUE

For the least-squares technique, we wish to minimize
I obs,i

d
e2= Y Vipsi— @ dv’ = Blops ;| - (A1)

i

a) Matrix Notation

In this and the following appendix, it is convenient to formulate the problem in terms of matrix operations. Initially, we
consider summation over the spectral dimension only and consider I and V' to be vectors. If we have N channels, then vectors
I, and I will be of length N. In estimating the derivative, we need one or two more channels in the I spectrum than the V
spectrum so that I will be of length N —1 or N —2 for the one- and two-sided derivatives, respectively.

Let D be the matrix representing the derivative operator, and let E be an identity matrix padded on the left, and possibly the
right, by a column of zeros. This is used to discard the first, and possibly the last, I channels (depending on the derivative used).
Let B be a matrix combining «, the derivative operator, and the leakage term according to

BI=aDI + BEL
The matrices B, D, and E will be of size (N —1)X N or (N —2)X N. For the one-sided case,

—a a+f
—a atp

whereas for the two-sided case,

—-a)Z B a/2

b) Solution of the Least-Squares Technique
We now rewrite equation (Al) as

g2 = (Vobs _BIobs)T(Vobs _BIobs)'

Differentiating with respect to « and B, equating to zero, and solving the resultant pair of linear equations, results in the
solution

_ SEESVD - SDESVE _ SDDSVE - SDESVD
est > est

; (A2)

SDDSEE - SLZ)E SDDSEE - SLZ)E

where
SDD- obsDTDI bs SDE IobsDTEIobs’ SEE= I E EJ obs

Syp=15DTV,., Sye=I1LETV,

obs*

These § terms are simple inner products between I, V;,, and derivative spectrum.
In the absence of a leakage term, the above equations simplify to

bs i bs z
- — — A3
Degt SDD Iobs D TD I ; obs, i Z ( )
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¢) Bias and Error Analysis

We now analyze the bias and error of the estimate. Here we assume there is no leakage. In addition, we initially assume there
is no noise correlation. The estimate of & will have some fluctuation caused by the noise. The numerator and denominator of
equation (A3) can be treated as random variables with a mean value, and some variation about this mean. Let

_kyptXyp

- (A4)
tpp +Xpp

Aest

where p,p and pup;, are the mean values of S;,;, and S, and the X quantities are the variation about this mean. In both the
numerator and denominator, the value of u and the variance of X are proportional to N. Hence as N increases, the X/ u ratios
are proportional to N~ /2, So for sufficiently large N, X is much smaller than p, and we can replace equation (A4) with its
first-order Taylor expansion:

Myp 1 122%»)
Aegt = + XVD ) XDD'
Mpp HMpp Mpp

We thus have

— Myp
Aest = E[aest] =

DD
and
1 Iﬁ/p Kyp
ol =var[a.] = ——var[Xyp]+ —— var [Xpp] -2—5—E[XpXpp]. (AS)
Kpp Kpp Kpp
If we assume uncorrelated noise, some analysis shows
wyp=&ITD'DI,  wp,=I"DTDI + aNo?,
var[X,p] = o?[TD"DI + 0242ITDTDDTDI + aNo*,  var[X,] = 402/ TDTDD’ DI +2bNo?, (A6)

E[X,,Xpp] =240 "D"DD7DI.

Here a=2or 1/2, and b =6 or 3/8 for the one- and two-sided derivative, respectively.

In simplifying, we ignore I TDTDDTD{, as this is small compared with the other terms for typical well-sampled lines. For
example, the ratio of this term to I™p™D[ is approximately (12 log, 2)/ ®2, for a Gaussian line with FWHM of & channels. We
define

o 1dl
==\ - (A7)

o

This is a measure of the signal-to-noise in the derivative spectrum. This gives

>

and

1 (&, 2b&% a.\*
03=732—N[7+—Az—( - ) . (A8)

The expression for ., shows that the estimate is essentially unbiased for large values of 1 (i.e., high signal-to-noise ratios) but
becomes progressively more biased as % decreases.

The second term in the variance (the term containing b) is not a significant term except when 7 = 1, and it can be ignored
when the signal-to-noise ratio is high (or very low). In addition, for large signal-to-noise ratios, there is essentially no bias, so

a., /a=1. So for high signal-to-noise ratios,
a2
1 dl;
2 _ =2 !
o= o/z(d) .
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The above analysis also holds if we consider spatial summing. The summations contained in the above equations are now
performed along the spatial as well as spectral dimensions. If the noise is correlated, however, the analysis changes. The
equation for &, remains the same, except that the value of a becomes 2[1— r,(1)] or [1—r,(2)]/2 for the one- or two-sided
derivative, respectively [recall that r,(i) is the correlation coefficient for the noise samples separated by i channels]. The error
variance changes significantly and will not be presented here.

d) Debiasing

The bias is in the least-squares estimate for & arises simply from the fact that it ignores the noise in the I,  spectrum. When
the signal-to-noise ratio in the derivative of I spectrum becomes small (less than about 10), this assumption becomes
inappropriate and manifests as a bias in the expected value of Sp,. The error variance (egs. (3.3) and [A8]) is biased by an
identical factor.

The bias caused by the term aNo “ in ppp. If we know the rms noise, o, we may subtract aNo * from the calculated value of
Spp, and so (to first order) we can “debias” the least-squares algorithm. Similarly we can eliminate the bias from the error
variance, o,. One must use some caution in performing debiasing, as error in o will incompletely remove the bias. However,
provided any uncertainty in o2 contributes negligibly to the overall uncertainty, equations (3.3) and (A8) remain valid equations
for the error variance of the debiased least-squares estimate of a.

APPENDIX B
THE MAXIMUM LIKELIHOOD TECHNIQUE

a) Solution of the Maximum Likelihood Technique

In this appendix, we continue to use the matrix notation introduced in Appendix A. Again we initially consider the case of
handling one spectrum only. However, we include noise correlation in our analysis. Let o?R be the covariance matrix of the
noise process. R is the square Toeplitz matrix corresponding to the noise autocorrelation function r,(i). This matrix will be of
size N X N when it is associated with 7, and (N —1) X (N —1) or (N —2)X(N —2) when associated with V. We distinguish these
as Ry, and Ry, . If the noise is uncorrelated, R becomes an identity matrix.

The appropriate probability density function is a multivariate Gaussian process, where the noise samples are not indepen-
dent. This probability density function (see Davenport and Root 1958) is proportional to

exp( ‘XZ)
2 >

0'2/\’2 = n;Rﬁ,lnl + ‘II;RE:HV = (Iobs - f)TR[_V,l(Iobs - f) + (V;)bs _Bf)TR;li(Vobs _Bi)'

where

The maximum likelihood solution for the unknowns a g, B, and I, (an estimate of I), are those values which maximize the

probability density function (or, equivalently, minimize x?). By differentiating with respect to the unknowns, it can be shown
that at a local minimum of y?
— _ =1, _ —

I = (RN,1 + BTRN:B) (RN,IIobs + BTRN:Vobs)’

e

SEESVD - SDESVE _ SDDSVE - SDESVD
’ est

Aegt = >

SppSee — She SppSee — S

where

SDD = Ig;tDTRI_\llDIest7 SDE = I;tDTRI—VlEIesU SEE = IeEtETRI_\’IEIest

v Vv v

TpTR-! _ JTRTR-1

Syp = IxD RN,,Vobs’ Sye=L<E'R ,,Vobs- (B1)

The S terms are quite similar to those in the least-squares case, except they are inner products involving I, (rather than 1),
and that Ry is used as the metric. If R is an identity matrix (i.., the uncorrelated noise case), then the similarity becomes

greater. Note that the equations of equation (B1) are not independent of each other.
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Since N +2 parameters (a, B8, and 1) are being fitted to 2N data points (N is the number of spatial and spectral points

included in the summation), the value of y? at the minimum follows a y? distribution with 2N — (N +2)= N —2 degrees of
freedom, provided that the signal-to-noise ratio is sufficiently large (see next paragraph). Thus, x? (@, Bests Ler) has a mean
value of N — 2 and an rms deviation of {/2(N —2) . This fact can be used to check the goodness of fit or the accuracy of the
estimate of o2
. The denvatlon of the formal errors of the fitted parameters a., and B follows the standard treatment (see Press et al.
1986, and references therein). This method is valid provided that the signal-to-noise ratio is high enough so that y? may be
approximated by a parabola within the range of the uncertainties of the fitted parameters. In such circumstances, the statements
in the previous paragraph regarding the distribution of x?(aeg,Bes lesr) are valid. We assume this to be the case in the
following discussion. We will limit our discussion to o, the error estimate for a., but the extension of the method to the other
fitted parameters is obvious. We begin by defining

sz(a)=Xz(aﬁﬁa’la)_Xz(aest’Best’Iest)’ (B2)

where B, and I, are chosen to minimize Xz at a given value of a. The key point is that Ay? as defined above and evaluated at
a = Q, where & is the true value, has a x? distribution with one degree of freedom. Thus, the 68% confidence interval for @ is
given by a. + o, where o, is determined from

Ax*(ae +0,)=1. (B3)
To restate this in simpler terms: the mterval (e — w Xest T 0 ) has a probability of 0.68 of enclosing &. We may derive an

explicit expression for o, by expanding Ay? around 1ts minimum:

ZAXZ

AXZ(Cy) AX (aCS[)_'_ 2 d 2 (a est) 2 d Z[X (a Ba’Ia)](a CS[)Z' (B4)

Combining equations (B3) and (B4) leads to the result:

1d

1 2
p=5m[x2(a Bar 1] (B5)

where the second derivative is evaluated at a.,. Some appropriate analysis shows that, when the signal-to-noise ratio is large,
the second (complete) derivative of x? can be replaced with the second partial derivative of x? with respect to a. Empirical
studies also have shown this approximation to be better than 1% in the cases tested. This gives

When the signal-to-noise ratio is poor x? is far from parabolic. In this case, it is more approprlate to fit a parabola to the
region around the minimum of y? and use the o, that this parabola implies. This parabola is not meant to approx1mate x?, but
rather to measure the broadness of the minimum. In practice, we fit a parabola to x? at three points, viz., at the minimum and
at the two points where Ax? =16 (i.e., +4 o). When the signal-to-noise ratio is moderate, this approach leads to an estimate
of o, which is only slightly larger than lmplled by the derivative. In poor signal-to-noise cases, it can lead to values a factor of
1.5 to 2 larger. However, it must be realized that the only completely rigorous method for estimating o, in the poor
signal-to-noise cases is to perform a Monte Carlo simulation.

b) General Algorithmic Concerns

A two-step iterative procedure was developed to find minima of y2. The first step is to calculate I, assuming we know a
and B. This involves the solution of the system of linear equations (first line of eq. [B1]). If R is an identity matrix, then the
linear system reduces to solving a system involving the matrix 1+B7B (1 is the identity matrix). This is a tridiagonal or
pentadiagonal matrix for the one- and two-sided derivatives, respectively, so the calculation of I is reasonably efficient.
During the second step, we assume we know I and then calculate the inner products needed to determine a. and B.,. We
iterate in this fashion until the unknowns converge. We start the algorithm by giving initial estimates of @ and B. In cases where
the signal-to-noise ratio is poor, y? has multiple minima. Often there is a spurious local minimum near a = 0. To attempt to
find the global minimum, our algorithm tries three initial estimates of «. For the first run, the least-squares solution for « is
used. The second and third runs use a; +150,,, where «; and o,, are the values of a and o, that the first run converged to.
The variable g is always initially set to 0. The best of these three minima is then chosen (often the three minima are identical).
In practice, we have never noted this scheme failing to converge to the global minimum.
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¢) Spatial Summing Extension

Equations (B1) and (B2) apply equally well to the case when we are performing spatial summing; it is just the details of the
matrices which change. Though it is possible to formally define the forms of these matrices, we will give only an intuitive
approach here. See, for example, Andrews and Hunt (1977) for matrix approaches in similar situations.

We temporarily assume the noise is uncorrelated; that is, the covariance matrix is an identity matrix. If we are given « and S,
we note that the calculation of I is dependent on values of I and V' in the same spectrum but is independent of I and V' at
different spatlal locations. Hence we deal with only one spectrum at a time when calculating I.,. The spatial extension of
calculating the inner products (the S terms in eq. B1), needed to estimate a and B, is straightforward. These simply involve
summing the products over the spatial dimensions, as well as the spectral dimension. Thus we again have a two-step algorithm,
where we iterate between calculating /. and a., and B..

d) Correlated Noise Case

The presence of R™! in these equations adds significant extra complexity to the algorithm. This is particularly true when
there is spatial summing, as this would couple the solutions of I, for one spectrum with the solutions of other spectra. The
matrices involved would quickly become unmanageably large. We now discuss two approaches to simplify the case where there
is correlation.

The first approach is to ignore the correlation, as the solution does not depend strongly on R. In particular, the equation
which gives I est is quite weakly dependent on R. To see this, we note that all the matrices involved are Toeplitz in form. If the
spatial summing region or the number of channels is large (which is invariably true), then the Toeplitz matrices are
approximately circulants (see Bellman 1960; or Andrews and Hunt 1977). Circulant matrices are commutative and the R factors
cancel out in the equation for I.,. In this case, solving for I, involves inverting the matrix 1+ B”B.

Simulation has also shown that the solutions of Iy, a.y, and B, are all weakly depending on the covariance matrix.
However, this is not true of the formal error, o,. If we completely ignore the covariance matrix, then the resulting formal error
will be too low. This is because we have fewer truly independent samples than the algorithm has assumed. Even if we ignore
correlation when solving for @ and B, we can still include it when estimating the formal errors. Another way of estimating the
formal error would be by simulation. These possibilities are examined in § IV.

A second approach for dealing with R™! is to look for matrix approximations which help simplify the calculations. As noted,
the matrices are approximately circulants, and so Fourier transform techniques could be used to perform the matrix operatlons
Another approxnnatlon which might be apphcable if the covariance matrix differs little from the identity matrix, is to use a
Taylor series expansion. Specifically, if R =1+ A, where A is small in some sense, then R™!=(1+ A)~!=1— A. This approach
is more applicable for the spectral dimension, where the correlation lengths are typically fairly short.

Although we have developed code to perform a full treatment of noise correlation in the spectral dimension, we have not
done so for the spatial dimensions. Rather we assume that the correlation does not affect the solution greatly. However, we
have developed code to perform a proper treatment of correlation when calculating o,. Because the noise autocorrelation
function is separable into a spatial function and a spectral function, the metric used in these inner products is also separable.
Provided the spatial region is small, then the matrix operations involved are manageable. For regions of even moderate size, we
must be cautious of the spatial covariance matrix being ill-conditioned or singular. This is an inevitable problem with radio
synthesis observations, being caused by incomplete coverage of the (u—v) plane. This singularity or near-singularity can result in
the errors in I being wildly amplified and leading to grossly incorrect values of o,. For the dirty beams from our observations,
we find that 3X3 is the largest spatial summing region we can handle, before ill conditioning in the spatial covariance matrix
becomes a problem.

This near-singularity is not a warning sign that our problem, or the maximum likelihood technique, is fundamentally
ill-conditioned. Rather it is a sign that the standard approach, of using the inverse of the covariance matrix, is not appropriate.

e) Maximum Likelihood Bias

Bias conclusions for the maximum likelihood case are more involved than the least-squares case. The problem is again caused
by biases in the expected values of S, and S;p. In calculating these for the maximum likelihood techmque we use Iest rather
than I, and it is the error in I, which causes the bias. Nevertheless, I is a better estimate of { than I obs: This is because
maximum likelihood uses 1nf0rmat10n in both I and V_,, when determining I Therefore, the maximum likelihood
technique should be less biased than the least- -squares technique.

The error in the max1mum likelihood estimate of [ is a function of & because the estimate of [ is a function of .. Indeed,
as a approaches zero, I, approaches I, and consequently the bias in the maximum likelihood technique should approach
that of the least-squares technique. On the other hand, for given signal and noise levels in I, as the magnitude of & increases,
the error in I, decreases, and the bias disappears.

As we do not have an expression for the bias of the maximum likelihood technique, and because the bias is also a function of

&, attempting to debias is much less attractive than it is for least squares.
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