Considerations for digital readouts for a submillimeter MKID array camera

Jonas Zmuidzinas

Division of Physics, Mathematics, and Astronomy

Caltech

MKID: basic principle

Coplanar waveguide (CPW) resonators

Frequency multiplexing

- Powerful multiplexing strategy
 - Many detectors are coupled to a single feedline
- Many channels per microwave amplifier
- Only cryogenic hardware: a pair of coaxes, and a wide-band LNA amplifier.

Antenna-coupled submillimeter-wave MKID

4×4 dual-color submm MKID array

Frequency response and antenna patterns

Demo at the Caltech Submillimeter Observatory (CSO)

The MKID camera for the CSO (NSF ATI + Moore)

- Jason Glenn, PI; Sunil Golwala, co-PI
- 24×24 array = 576 spatial pixels
- Four colors/bands: $\lambda = 1.3$, 1.1, 0.85, and 0.75 mm
- $576 \times 4 = 2304$ MKID resonators
- Focal plane: 4×4 mosaic of 6×6 (×4) tiles
- Each $6 \times 6 \times 4$ tile has 144 MKIDs total
- 2.8 MHz per MKID \rightarrow 400 MHz bandwidth per tile

Proposed 400 MHz bandwidth digital readout scheme

Issues to consider

- Digital signal processing algorithm in FPGA
- Frequency selection, output data rate
- Noise
- Dynamic range
- Spurious frequencies, intermodulation products, etc.
- Implementation details: location, packaging, power source, communication, computer interface, etc.

Digital downconverter (DDC)

Disadvantage: DDCs are "silicon intensive", difficult to pack lots of channels onto FPGA.

FFT Channelizer

Advantage: FFT computation scales $N \log(N)$. FPGAs are capable of real-time 32k point FFTs at input data rates 2 GSamples/sec.

Disadvantage: sinc(x) sidelobes, wide output bandwidth.

A better channelizer (Pentek)

The silicon-intensive post-FFT digital downconverter is shared (*time multiplexed*) among the 256 outputs.

MKID Noise

MKID Noise: frequency vs. dissipation fluctuations

MKID Noise: power scaling

MKID submm response vs. microwave readout power

Conclusion: $P_{\mu W} \approx P_{submm} \sim 10 \text{ pW}.$

HEMT and ADC noise

- Best case: MKID amplitude noise due to background photon statistics rises above HEMT LNA noise.
- ADC noise should be kept below HEMT noise, $k_b T_{LNA} \Delta \nu$, where $T_{LNA} = 2 5$ K for a modern cryogenic HEMT.
- Maximum readout power: $P_{\mu\nu}^{(max)} \approx P_{submm} = \eta k_B T_{load} \Delta f$.
- LNA noise to readout carrier ratio for $\Delta \nu = 1$ Hz is:

$$\rho_{\rm LNA} = \frac{k_B T_{\rm LNA} \Delta \nu}{P_{\mu \rm W}^{(\rm max)}} = \frac{T_{\rm LNA} \Delta \nu}{\eta T_{\rm load} \Delta f} \approx 3 \times 10^{-12},$$

or in engineering units, around -115 dBc/Hz.

• How low is the ADC noise ? Better than -115 dBc/Hz ?

ADC quantization noise, SNR

• ADC quantization noise, uniform distribution, in LSB = 1 units:

$$\sigma^2 = \int_{-1/2}^{1/2} x^2 dx = \frac{1}{12}$$

- Maximum signal amplitude is $A = 2^N/2$ (positive and negative).
- Signal power for sine wave is $P_{\text{max}} = A^2/2 = 2^{2N}/8$.
- Signal to noise ratio: SNR = $P_{\text{max}}/\sigma^2 = 2^{2N} \times 12/8 = 2^{2N} \times 3/2$.
- Decibels: SNR= $10 \log_{10}(2^{2N} \times 3/2) = 6.02N + 1.76$ dB.
- The noise power is spread across entire Nyquist bandwidth, $\nu_S/2$.

ADC noise: definition of SNR

Note: *M*-point FFT spreads noise power into M/2 bins.

ADC dynamic range requirement

• The best noise to carrier ratio that an ADC can achieve for a 1 Hz bandwidth is given by

$$\rho_{\rm ADC}^{\rm (min)} = \frac{1}{0.5\nu_S\,{\rm SNR}} \; . \label{eq:particular}$$

This quantity is a measure of the dynamic range of the ADC.

- Frequency multiplexing of N_c carriers requires carrier power at the ADC input to be reduced to P_{max}/N_c (the carrier powers add since frequencies are incommensurate).
- For $N_c = 144/2$ channels, we need:

 $\rho_{ADC}^{(min)} < \rho_{LNA}/N_c = -115 - 10 \log_{10}(72) = -134 \text{ dBc/Hz}.$

• Equivalently, for $\nu_S = 400$ MHz,

 $SNR > +134 - 10 \log_{10}(200 \text{ MHz}) = 51 \text{ dB, or } ENOB = 8.7$

ADC dynamic range requirement, part 2

• More generally:

$$\mathsf{SNR} \ge rac{1}{0.5
u_S} rac{N_c}{
ho_{\mathsf{LNA}}}$$

- However, resonator frequency spacing $\Delta\nu_c$ needs to be kept constant.
- Therefore:

$$\mathsf{SNR} \ge rac{1}{\Delta
u_c \,
ho_{\mathsf{LNA}}}$$

• For $\Delta \nu_c = 2.8$ MHz,

 $SNR \ge 115 - 10 \log_{10}(2.8 \text{ MHz}) = 51 \text{ dB}.$

• SNR generally decreases with sampling rate, so the requirement above dictates the maximum usable sampling rate.

The TI ADS5474 14-bit, 400 MSPS ADC

ADS5474

SLAS525-JULY 2007

14-Bit, 400-MSPS Analog-to-Digital Converter

FEATURES

- 400-MSPS Sample Rate
- 14-Bit Resolution, 11.2-Bits ENOB
- 1.4-GHz Input Bandwidth
- SFDR = 80 dBc at 230 MHz and 400 MSPS
- SNR = 69.8 dBFS at 230 MHz and 400 MSPS
- 2.2 V_{PP} Differential Input Voltage
- LVDS-Compatible Outputs
- Total Power Dissipation: 2.5 W
- Power Down Mode: 50mW
- Offset Binary Output Format
- Output Data Transitions on the Rising and Falling Edges of a Half-Rate Output Clock

- On-Chip Analog Buffer, Track-and-Hold, and Reference Circuit
- TQFP-80 PowerPAD[™] Package (14 mm × 14 mm footprint)
- Industrial Temperature Range: –40°C to +85°C
- Pin-Similar/Compatible with 12-, 13-, and 14-Bit Family: ADS5463 and ADS5440/ADS5444

APPLICATIONS

- Test and Measurement Instrumentation
- Software-Defined Radio
- Data Acquisition
- Power Amplifier Linearization
- Communication Instrumentation
- Radar

Note: ENOB = 11.2 > 8.7

SNR plot for TI ADS5474

SFDR Definition

Typical spectrum for TI ADS5474

SPECTRAL PERFORMANCE FFT FOR 130 MHz INPUT SIGNAL

Two-tone spectrum for TI ADS5474

SFDR plot for TI ADS5474

Conclusions

- Digital readout for 144 channel MKID array looks highly feasible.
- Need ENOB = 8.7 bits and SNR = 51 dB, doable at 400 MSPS.
- ATMEL/e2V has a 2 GSPS, 10 bit digitizer but with SNR = 40 dB and ENOB = 6.4 bits. Not quite good enough !
- Output data rate around 100 Hz is fine.
- Hybrid FFT/DDC channelizer demonstrates required channel count.
- Spurs, harmonics, intermodulation products, etc. need to be investigated, but most likely OK. Modulation of sky signal will remove offets. "Hit probability" is low, $0.5N_c(N_c-1) \times 100 \text{ Hz}/400 \text{ MHz} = 0.25\%$. Walsh function carrier modulation could be implemented.