



# Future Detector Technologies for Radio Astronomy

## Jonas Zmuidzinas Caltech

January 6, 2004





Radio Astronomy

- So what is radio astronomy, anyway ?
  - centimeter waves
    - $f < 30 \text{ GHz} (\lambda > 1 \text{ cm})$
  - millimeter waves
    - 30 < f < 300 GHz (10 > λ > 1 mm)
  - submillimeter waves
    - 300 < f < 1500 GHz (1 > λ > 0.2 mm)





#### Astrophysical Measurements

- Photometry (continuum)
  - Spectral resolution ( $v/\Delta v$ ) ~ 3-10
  - Science examples: CMB, SZE, dust emission
  - Detector arrays:
    - Bolometers
    - photon detectors
    - HEMTs (arrays)
- Spectroscopy (atoms, molecules, ions)
  - Spectral resolution ( $\nu/\Delta\nu$ ) ~ 10<sup>2</sup> 10<sup>6</sup>
  - Science examples: ISM, star formation, galaxies
  - Detectors:
    - SIS and HEB mixers
    - HEMTs

also for interferometry

• Direct detectors & bolometers (moderate resolution)





# **COHERENT vs. INCOHERENT DETECTION**

January 6, 2004



#### Future detector technologies for radio astronomy Coherent vs. direct detection



(or, should I build a radio receiver ?)

Quantum noise:

(where "radio receiver" = heterodyne or superhet)

direct detection

x-ray pulse: Aluminum, 1/4-wave detector

#### coherent detection



Even with no photons at input, a perfect maser amplifier has nonzero output noise due to spontaneous emission. This is an example of quantum noise.

$$T_{QL} = \frac{h\nu}{k_B} \approx 0.05 \,\mathrm{K} \left[ \frac{\nu}{1 \,\mathrm{GHz}} \right]$$

2.5 2 Fe-55, 6 KeV Signal/ Noise = 836 (stim tible 0.5 0

of a *single* 6 keV X–ray photon. *Exact* photon counting is possible, in principle.

January 6, 2004





#### Should I care about quantum noise ?







#### WMAP's HEMT (radio) receivers image the CMB...



Allows determination of cosmological parameters, e.g. the Universe is flat.

WMAP = NASA CMB (space !) mission



+ BOOMERANG, MAXIMA, DASI,...

Credit: WMAP science team





...while bolometer cameras search for distant galaxies from the ground

Bolometer advantages:

 bandwidth ! (sensitivity)
 large arrays



HDF - SCUBA



BOLOCAM array



January 6, 2004

URSI '04 - Zmuidzinas

Credit: BOLOCAM team





### CHALLENGES

- Direct detectors
  - Array size (multiplexing !)
  - Sensitivity (esp. for space observatories)
  - Functional integration (filtering, polarization sensitivity, etc.)
- Heterodyne systems
  - Sensitivity (approach quantum limit)
  - Frequency range (push into far-IR)
  - Bandwidth (RF and IF)
  - Arrays





# **TECHNOLOGIES FOR SPECTROSCOPY**

January 6, 2004





Superconductor



Δ

Δ

#### Superconducting Tunnel Junction (SIS) mixers

- SIS: superconducting tunnel junction
- SIS is a "submillimeter photodiode"
  - One electron per photon absorbed
  - "photon-assisted tunneling"
- First demonstrated in 1979
- Reason why ALMA is worthwhile !
- Reverse PAT limits frequency to ~1.6 THz







#### **APEX and ALMA**



APEX: 12m submm telescope in Chile (MPIfR Bonn)

ALMA: 64 x12m aperture-synthesis interferometer (world's largest radio astronomy project)

January 6, 2004

URSI '04 - Zmuidzinas

Credit: APEX/MPIfR





#### Waveguide Coupling



URSI '04 - Zmuidzinas

Credit: J. Kooi





#### 200-300 GHz waveguide SIS chip







#### Far-IR Observatories: SOFIA and Herschel



- NASA/USRA/DLR
- 2.5m telescope
- 747 SP aircraft
- 6+2 first-light instruments
- first science in 2005



- ESA/NASA
- 3.5m telescope
- 3 instruments
  - PACS
  - SPIRE
  - HIFI
- 2007 launch

January 6, 2004





#### **Quasioptical coupling**



Credit: D. Rutledge





#### **Quasioptical SIS chip**







# Far-infrared mixers:

Superconducting Hot Electron Bolometers (HEB)



January 6, 2004

URSI '04 - Zmuidzinas

Credit: B. Karasik





Solid-state tunable 1.6 THz local oscillator for HIFI









# **TECHNOLOGIES FOR PHOTOMETRY**

January 6, 2004





#### **Bolometers**





Future detector technologies for radio astronomy Bolometer Arrays – SHARC II at 350 μm





URSI '04 - Zmuidzinas

Credit: C. D. Dowell & GSFC





#### Superconducting (TES) thermistors



URSI '04 - Zmuidzinas

Credit: D. Benford





#### Multiplexing !!! (using SQUIDs)





K. Irwin et al, NIST-Boulder



January 6, 2004

URSI '04 - Zmuidzinas

Credit: W. Holland UK ATC



#### Future detector technologies for radio astronomy Multiplexed TES bolometer arrays



# SCUBA2: 5000 close-packed pixels



Credit: W. Holland UK ATC



Future detector technologies for radio astronomy Why more CMB measurements ? POLARIZATION







**Bolometers from JPL** 

URSI '04 - Zmuidzinas

Credit: J. Bock









#### Precision MM-Wave Measurements of Superconducting Microstrip Lines

A. Vayonakis et al. (2003), in prep.



# 100 GHz test chip with 10 mm microstrip stub

January 6, 2004





## Measured antenna pattern



- use SIS direct detector
- •4 K testing
- silicon substrate
- quartz AR plate
- •19<sup>0</sup> FWHM
- •95% main beam efficiency

Goldin et al. (2003)





#### **Demonstration of Antenna-Coupled TES**







#### A new superconducting detector









#### letters to nature

#### A broadband superconducting detector suitable for use in large arrays

Peter K. Day<sup>1</sup>, Henry G. LeDuc<sup>1</sup>, Benjamin A. Mazin<sup>2</sup>, Anastasios Vayonakis<sup>2</sup> & Jonas Zmuidzinas<sup>2</sup>

<sup>1</sup>Jet Propulsion Laboratory, Pasadena, California 91107, USA <sup>2</sup>California Institute of Technology, 320-47, Pasadena, California 91125, USA





# IQ readout of amplitude and phase



 $V \cos(\omega t - \phi) = V \cos \phi \cos \omega t + V \sin \phi \sin \omega t$ 





# It works !!!



- Rise time: resonator bandwidth
- Fall time: quasiparticle decay
- Nyquist sampled readout
- High pulse SNR:
  - \$E ~ 11 eV
- Output noise spectrum measured
  - Appears to be dominated by resonator noise
  - Origin not yet determined
  - Readout NEP contribution ~10 dB lower
  - NEP ~ 10<sup>-16</sup> W / Hz<sup>1/2</sup>





#### Antenna-coupled kinetic inductance detector



- Niobium ground plane (green) and top microstrip conductor (black)
- Aluminum center conductor of CPW KID resonator (blue)
- Simple to fabricate !
- KID is easy to couple to antenna
- Ultimate NEP limit <  $10^{-19}$  W/Hz<sup>1/2</sup>
- *Demonstrated* NEP already useful for ground-based submm imaging
- Single-pixel or small array lab demo at 850 μm expected in 2004
- Prototype instrument on CSO by end of 2005 ?





## Frequency-domain Multiplexing







# Wireless Technology for Readouts

 Many readout channels can be condensed onto a single circuit board using cell phone ICs (at 1-2 GHz, plus block upconversion if necessary)



January 6, 2004





# Conclusions

- Superconducting detectors are proving to be critical for mm/submm radio astronomy
  - SIS mixers
  - HEB mixers
  - TES/SQUID bolometers ?
  - Integrated CMB focal planes ?
  - KIDs?

Superconducting Detectors and Mixers for

 Proc. IEEE, in prep.

Millimeter and Submillimeter Astrophysics

Jonas Zmuidzinas, Member, IEEE and Paul L. Richards

(Invited Paper)