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Figure 1: Dielectric slab in between two conducting plates. The Z direction is normal to the
plates.

Problem 1 (15 points total)

Two parallel conducting plates, each with area A, are separated by a distance h and are held
at potentials ®; and ®,. A uniform slab of linear isotropic dielectric material with € = €,€q
and thickness ¢ is placed on the bottom plate (see Fig. 1). Ignore fringing fields.

(4 points) (a) What is the capacitance 7 What is the limiting value as € — oo? Is it
what you expect ?

Let region I be the empty region ¢ < z < h, and region II be the filled region 0 < z < t.
The fields in these regions will be denoted by EI, DI, EH, and D I Except on the capacitor
plates, there is no free charge. From V-D= 0, we know that 2 - Dis equal on the two sides
of the z =t boundary. Since the fields point in the —2 direction, we write

Dy =D =—-Drz2= D2 .

The surface charge density on the plates can be obtained by applying the divergence theorem
to V- D = p (this just yields Gauss’ law); the result is 0y = Dy and 09 = —Dj. The voltage



between the plates is

2 1 1
Vz@l—%:/ E-di = Ey(h =) + Byt = —Di(h — 1) +
1 0

D]]t .

€r€o

Using Dy = Dy = 01 = 02 = Q/A, we have

vzl[h—wqg

€0 €1 A

and so the capacitance is

_Q_ €0 A
C_V_h—t+t/e,.'

As e, — 00, C — €gA/(h—t), as we expect if the dielectric is replaced by a perfect conductor.

(3 points) (b) Suppose (for this part only !) that the dielectric is replaced by a ferro-
electric material, which has a constant polarization P=rP: independent
of E. For ®, = Vp, &y = 0, calculate E , 5, and ® everywhere between
the plates.

We can immediately write
[j[[ = —605112 + Pz = —5]]2

SO

Eir=—(Di+P).

1
€o
The voltage between the plates is now

h—t t
‘/1 = EI(h — t) + EHt = —DI + —DH .
€0 €0

Since D; = Dy still holds, we can solve for

= = eVi t ] .
Di=Dyp=—|——=P
I I1 [ A A 2,
and the corresponding electric fields are
Er = — e i
Tt { hoh eo]
while —_— P
- 1 — 1 —t
Egy=—|Dy—-Pl=—|—4+——|2
= [Bu - 7] [ i b ]



Since E = —6@, the potential can be calculated by integrating the electric field:
P(z) = —/ dz' {E(z’) : 2} .
0

This gives
Viz P (h—2)z2c
B(z) = L2 4 DT E)E<
)

where z. = max(z,t) and z. = min(z,t).

(4 points) (c) The plates are grounded, ®; = ®;, = 0. Suppose that a point charge ¢
is inserted at a position 77, between the plates, either in the free-space
region, t < z, < h, or in the dielectric slab, 0 < z, < t. Calculate the
total charge ()7 induced on the top plate for both cases. Hint: consider
the integral

1= [ &7 () [99%% - V]
where V is the volume between the plates. Apply Green’s theorem, using
a judicious choice for ¢ and .

Since €(7) is constant in regions I and II, we may split up the integral
I=e [ &7 [69%0 —oV20| +e [ dF [69%% — uvig] .
Vi Vir
Green’s theorem tells us that

0 0
/ & (o7 — V] = / 620 _ 9% s
Vi s; | On on
and a similar expression holds for region II. Note that S; includes the top plate at z = h as
well as the boundary between the regions, z = t. Meanwhile, Str includes the bottom plate
at z = 0 as well as the z = t boundary. Because D - Z is conserved at the z = t boundary,

and because n = —Z for S; while n = +2 for S;; on this boundary, we see that
oy oY
€ —| = —€—
on sy on Sir

and similarly for ¢. Also, both ¥ and ¢ are continuous across the z = ¢t boundary. We
therefore conclude that the two integrals on the z = ¢t boundary cancel each other, so that

o 0 o 09
I= Y Y da .
€0 /top plate lgb on ¢8n] da te bottom plate [QS on (9n] da

Furthermore, the surface charge densities on the plates are given by o = —D - 2 for the top
plate and ¢ = D - Z for the bottom plate. Relating D - Z to the normal derivatives of the
potential gives

I= [¢oy — o] da + [¢oy — o] da .

top plate bottom plate



We choose 1 to be the potential when ®; = V;, ¢, = 0, and no free charge exists between
the plates, so that V2 = 0. Meanwhile, ¢ is taken to be the potential when ®;, = ®, = 0,
and a point charge is placed between the plates:

_ 4 _
Vi = 6(7_1,(1)5(7’ ) -
Thus . . g . .
I= [, @7 [69%0 —u96] = | @reru(n) 5007~ 1)
SO

I= qw(Fq) :

Meanwhile, most of the surface integrals vanish, leaving only

I = —/ Yoyda = —Vl/ ogda = =V Q4
top plate top plate

where (), is the charge induced on the top plate by the point charge at 7,. We have therefore
shown that ~
P(ry)

Q1= —q v,

All that is left is to determine the potential ¢, which is easily done by integrating the electric
field from part (a):
Y(rg) 2e L t
Vi e(h—t)+t h—t+t/e
Here, 2z~ = max(z,,t) and z. = min(z,,t). You can check this result by examining the cases
e — 1 and €, — oo (try this as an exercise).

(4 points) (d) Suppose that in addition to the usual linear response of the polarization to
the electric field, the dielectric slab between plates also has a non—uniform
built—in polarization density 6 P(7), so that

13(77) = eoxeﬁ + 6]3(77) )

Obtain an expression for the charge 6@Q; on the top plate that is induced
by the built-in polarization § P(r).

The key for this problem is to remember that the polarization 515(77‘) tells us the additional
dipole moment per unit volume, and is equivalent to adding some charge density distribution
inside the dielectric. Furthermore, we already know the response to a point charge from part
(c), so we can use superposition to get the answer.

Using the definition of ﬁ,

ﬁ:eoﬁ+ﬁ:eoﬁ+eoxeﬁ+5ﬁ.
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Since there are no free charges,

0=V -D=V.(eE)+V-6P,
defining € = €y(1 + x.) as usual. Thus, the situation is entirely equivalent to havmg an
ordinary dielectric material, obeying D = eE in which a charge density dp = —V 6P is

embedded. Note that §P and dp are functions of position inside the material, and are not
constant in general.

In part (c), we essentially found the “Green’s function” for this problem, namely the total
charge on the top plate induced by a point charge somewhere between the plates. Thus, we
can immediately use superposition to obtain the desired result,

1

| d*F2(V-6P).
GT(h — t) 41 Vrir TZ(V )

0Q1 =+

Integration by parts may be used to simplify the result to

1

- - 372(%.5P) .
Er(h—t)+t V]Idr(z 5 )

0Q1 = —

This makes sense; only dipole moments in the Z direction are effective at inducing charge on
the top plate.



Problem 2 (15 points total)

A sphere of radius a is made from a material with dielectric constant € = ¢; and magnetic
permeability p = o and carries a uniform charge density o on its surface. The sphere spins
about a central axis at angular frequency w.

(5 points) (a) Suppose you were interested in measuring the magnetic field produced by
the spinning sphere in the laboratory. How difficult would this be 7 Make
a rough order-of-magnitude calculation of the magnetic field strength B
near the surface of the spinning sphere. Assume that the sphere has a
radius @ = 10 c¢m, the spin rate is w/27m = 1000 revolutions per minute,
and that the electrostatic potential of the sphere is around 1 kilovolt.
Compare your result with the strength of earth’s magnetic field, which is
around 0.3 Gauss.

The easiest way to get an answer is to find the equivalent surface current K at the equator.
To find its magnitude K, consider a small dl perpendicular to the equator (i.e. in the 6
direction) and calculate the charge that passes in a time interval dt :

dQ = Kdldt = odl (vdt)
where v = wa is the velocity of the sphere at the equator. Thus,
K=cv=wao.
Ampere’s law provides the boundary condition
A x (Hy—Hy) =K

that the magnetic field must satisfy at a current—carrying surface. Therefore, a rough ap-
proximation is that H ~ K, and B ~ poK.

Next, we need to relate the potential to the surface charge density. Recall that

1
O(r) = — Q
4meg T
for a uniformly charged sphere. Therefore,
> Q _ e0®P(a)
4ma? a

where ®(a) =1 kV.
Putting everything together:

B~ pgegw®(a) = 1.2 x 1072 Tesla = 1.2 x 10~® Gauss .
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This is tiny compared to the Earth’s field of ~ 0.3 Gauss. Nonetheless, Henry Rowland
succeeded in performing a similar experiment, detecting the magnetic field produced by a
charged spinning disk, back in 1876!

(10 points) (b) Obtain expressions for the vector potential A(7) and the magnetic field
B(7), both inside and outside the sphere.

OK, so this is where you need to use some heavy math. One way to proceed is to calculate
the vector potential A, and then use B =V x A. The vector potential satisfies

VQ/T = —/Loj

provided we are working in the Coulomb gauge, V - A = 0. The formal solution is provided
by using the free-space Green’s function,

—

J(7

FF'

Ay = [ L

The current density is nonzero only on the surface of the sphere, so

Al

J(7') = owasin06(r' — a) ¢

It is important to remember that QAS, will not be a constant inside the integral — it really
should be written as .,

¢ = —sin@'s + cos @'y

and so cannot simply be pulled out of the integral. Nonetheless, symmetry about the rotation
axis tells us that the resulting vector potential must be in the direction ¢.

The rest is grunge. You need to use the spherical harmonic expansion

1 4r Lo,
>

lm

7=

Also, using Y41 ~ sin 6 e, you can write

f(F”) = 8 owad(r' — a) i Vi1 (Q) + Y1 41(Q)] 2 — 1 Y11 () = Y11(Q)] g7 -
3 21 2

The only thing left to do is integrate. The orthogonality of the spherical harmonics kills all
terms except [ = 1, m = £1. The radial integral is easy because of the delta function. After
some straightforward algebra (do this as an exercise), one finds

i) = ¢N00wa .0{(/a r<a

a/r)?, r>a
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To calculate B , we can look up the curl in spherical coordinates and grind away. This works,
is pretty quick, but not so illuminating.

Another way to proceed is to realize that rsin (9(5 = 2z x 7. This means that the vector
potential we found for the r > a region is exactly the same as that produced by a magnetic

moment (Jackson 5.55):
5o Mo mMXT
A(F) = —=
D=

where the magnetic moment of our spinning sphere is

1
m = gQwa22 .

Thus, the field outside the sphere is just a dipole field (Jackson 5.64):

_ po [ 3P(F-m) —m
A |71

Just outside the sphere, at the equator, you can show that this exact answer is a factor of 3
weaker than the rough estimate in part (a). (Do this as an exercise).

B(r)

Inside the sphere, the result is
. X T
A = fo M X T

At a3

Since B B B
Vxmxr)=m(V-r)—(m-V)r=3m—m=2m,

we see that the field inside the sphere is uniform:

B (= o 1M

To check these results, you can independently calculate the magnetic moment of the spinning
sphere, using Jackson (5.54):

1 3}
i = 5 /d?’FFx J(7)

which for a surface current reads
o [ da7x R(7)
m= — a7 7) .
2 Js

Using K = owasinf &, one can show that the same result for 7 is obtained. (Try this as an
exercise).

This problem is equivalent to the uniformly magnetized sphere that is worked out in Jackson.



