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11.6

We will first find the position of a spaceship x(τ) in the earth frame after a
proper time τ has elapsed. We consider the case of constant proper acceler-
ation ~a = (a, 0, 0) and initial velocity v(0) = 0. Now, in the earth frame we
have

U = (
dt

dτ
,
d~x

dτ
) = γ(1, ~v), (1)

where ~v is the rocket’s velocity as measured in the earth frame. The 4-
acceleration,

A =
dU

dτ
, (2)

is a 4-vector and thus has an invariant length. That is, A ·A = −(A0)2+ ~A · ~A

has the same value in all inertial frames. If we consider a reference frame
with coordinates t̃ and ~̃x which is instantaneously comoving with the rocket,

we find that d2 t̃
dτ2 = 0 and d2~̃x

dτ2 = ~a, which implies that

A · A = ~a · ~a (3)

in all frames. Combining Eq. (3) with the observation that U · a = 0 (which
can be obtained by differentiating U · U = −1) and Eq. (1), we find that

d2t

dτ 2
= vx

d2x

dτ 2
, (4)

where t and x refer to the earth coordinate system. This shows that the
4-acceleration in the earth frame is given by
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A = (vx

d2x

dτ 2
,
d2x

dτ 2
, 0, 0), (5)

a fact which can be combined with Eq. (3) to show

a2 = (1 − v2)(
d2x

dτ 2
)2. (6)

Thus, d2x
dτ2 = γa, which implies together with d2x

dτ2 = d(γv)
dτ

= γ3 dv
dτ

that

dv

dτ
= a(1 − v2). (7)

Together with the condition that v(0) = 0, this equation has the solution
v = tanh(aτ).

Now, dx
dt

= v(t) so that dx = v(τ)γ(τ)dτ and thus

x(τ2) − x(τ1) =
∫ 2

1
dx =

∫ τ2

τ1

v(τ)γ(τ)dτ =
∫ τ2

τ1

tanh(aτ)
√

1 − tanh2(aτ)
dτ (8)

=
∫ τ2

τ1

sinh(aτ)dτ =
1

a
cosh(aτ2) −

1

a
cosh(aτ1). (9)

Now we have to reintroduce the factors of c that were suppressed in the
calculation above. In particular,

x(τ2) − x(τ1) =
c2

a
cosh(

aτ2

c
) −

c2

a
cosh(

aτ1

c
). (10)

This allows us to immediately answer part (b) by taking τ1 = 0, τ2 = 5yrs
and a = g. The result is that in the first 5 years, the spaceship will travel a
distance of

c2

a
(cosh(

aτ2

c
) − 1) = cτ2(

c

τ2a
)(cosh(

aτ2

c
) − 1), (11)

which by calculating aτ2
c

= 9.81·5·365·24·3600
3×108 = 5.16 becomes

c · 5yrs(
1

5.16
)(cosh(5.16) − 1) = 83.4 light years . (12)

The distance traveled during the second leg is the same, so that the total
distance traveled is 166.8 light years.
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We now go back to (a):
Now, dt = γdτ , so we have

t =
∫ τ

0
γ(τ)dτ =

∫ τ

0
cosh(aτ)dτ =

1

a
sinh(aτ). (13)

Again, we must reintroduce the factors of c, to get

t =
c

a
sinh(

aτ

c
) = τ

c

aτ
sinh(

aτ

c
) (14)

so that the earth time elapsed in the first 5 year leg of the trip is 5 yrs 1
5.16

sinh(5.16) =
84.4yrs. The earth time elapsed on each 5 year leg of the trip is the same
(which can be seen from the symmetry of the problem), so that the total
time elapsed on earth during the entire voyage is 4 · 84.4 = 337.6years.

11.13

a) In the frame K ′ we simply have an infinite line charge. This has zero
magnetic field and a 1

r
electric field. In particular, we have

~B′ = 0 and (15)

~E ′ =
2q0

r′
r̂′. (16)

We can transform this back to the lab frame by using the general relation

~E = γ( ~E ′ + ~β × ~B′) −
γ2

1 + γ
~β(~β · ~E ′) (17)

~B = γ( ~B′
− ~β × ~E ′) −

γ2

1 + γ
~β(~β · ~B′) (18)

with ~β = −
v
c
ẑ. In particular, this leads to

~E = γ ~E ′ =
2γq0

r′
r̂′ and (19)

~B =
2γq0

r′
v

c
ẑ × r̂′ =

2γq0v

cr′
φ̂ (20)

b) In K ′ the charge density is given by
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ρ(r, z, θ) =
q0

πr
δ(r), (21)

which can be seen by noticing that the integral over r and θ gives the appro-
priate linear charge density:

∫ 2π

0

∫

∞

0
ρ(r, z, θ)rdrdθ = 2π

∫

∞

0

q0

π
δ(r)dr = π

∫

∞

−∞

q0

π
δ(r)dr = q0. (22)

Since K ′ is the rest frame of the wire, the current density is simply zero.
Thus, the 4-current is

J = (c
q0

πr
δ(r), 0, 0, 0), (23)

in the K ′ frame. Lorentz transforming this into the lab frame gives

J = (cγ
q0

πr
δ(r), vγ

q0

πr
δ(r)ẑ). (24)

c) Now we’d like to calculate the ~E and ~B fields directly from Eq. (24).
Because of the cylindrical symmetry, the electric field can be determined
using Gauss’ Law:

2πrLE(r) = 4π
∫ r

0

∫ 2π

0

∫ L+L0

L0

ρ(s)dLsdsdφ = 8π2L

∫ r

0
ρ(s)sds = 4πLγq0,

(25)

leading to ~E(r′) = 2γq0

r′
r̂′, as found in part (a).

To find the magnetic field, we use Ampere’s law along a circle of radius
r to find

∮

~B · d~l =
4π

c

∫

~J · d~a, (26)

which implies

2πrB(r) =
4π

c

∫ 2π

0

∫ r

0
vγ

q0

πs
δ(s)sdsdφ (27)

=
8π2

c
vγ

q0

π

∫ r

0
δ(s)ds (28)

=
8π2

c
vγ

q0

π

1

2
. (29)
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From this we can deduce
~B =

2γvq0

cr
~φ, (30)

again in agreement with (a).

12.3

Warning: we take c = 1 for this problem.

We take ~E0 to point along the z axis and ~v0 along the x axis. Since ~B = 0,
the equations of motion of the particle are given by

d~p

dt
= e ~E0 (31)

dε

dt
= e~v · ~E0, (32)

where we have let ε be the energy to avoid confusion with the electric field.
Writing these out in component form, we find

dpx

dt
= 0 (33)

dpy

dt
= 0 (34)

dpz

dt
= eE0 (35)

dε

dt
= evzE0, (36)

the first three of which have solutions

px = constant = 0 (37)

py = constant = m
v0

√

1 − v2
0

(38)

pz = eE0t + constant = eE0t. (39)

Now,

ε(t) =
√

~p2 + m2 =

√

√

√

√

m2v2
0

1 − v2
0

+ (eE0t)2 + m2 =

√

m2

1 − v2
0

+ (eE0t)2, (40)
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so that

~v(t) =
1

mγ
~p(t) =

1

ε
(0,m

v0
√

1 − v2
0

, eE0t) =
1

√

m2

1−v2

0

+ (eE0t)2
(0,m

v0
√

1 − v2
0

, eE0t),

(41)
which can be integrated to give

x(t) = 0 (42)

y(t) =
mγ0v0

eE0

sinh−1(
eE0t

mγ0

) (43)

z(t) =

√

√

√

√t2 +
m2γ2

0

(eE0)2
−

mγ0

eE0

. (44)

(b) Eliminating t in the equations above, we find

sinh(
eE0

mγ0v0

y) =
eE0t

mγ0

⇒ (45)

z =
mγ0

eE0

[

√

sinh2(
eE0

mγ0v0

y) + 1 − 1] =
mγ0

eE0

[cosh(
eE0

mγ0v0

y) − 1]. (46)

For times t ¿ mγ0

eE0

we have y ¿
mγ0v0

eE0

so that

z ≈
mγ0

eE0

[1 +
1

2
(

eE0

mγ0v0

y)2
− 1] =

eE0

2mγ0v
2
0

y2. (47)

For t À mγ0

eE0

we have

z ≈
mγ0

2eE0

exp(
eE0

mγ0v0

y). (48)
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