Solutions to Problem Set 4.

Graeme Smith

May 21, 2004

5.26

Figure 1:

To find the magnetic field due to a single wire, we use Ampere's law:

Letting ρ be the radial distance to the wire, on the outside of the wire we find

$$2\pi\rho B(\rho) = \int \vec{B} \cdot d\vec{l} = \mu_0 I, \qquad (1)$$

which implies

$$\vec{B}_{out}(\rho) = \frac{\mu_0 I}{2\pi\rho} \hat{z}.$$
 (2)

On the inside, we get

$$2\pi\rho B(\rho) = \int \vec{B} \cdot d\vec{l} = \mu_0 I \frac{\rho^2}{R^2},\tag{3}$$

where R is the radius of the wire. Using the relation $\nabla \times \vec{A} = \vec{B}$, we find that $B_z = -\frac{\partial}{\partial \rho} A_z$, which implies

$$A_z = -\int B_z d\rho. \tag{4}$$

So,

$$A_z = -\frac{\mu_0 I}{4\pi} (\log(\frac{\rho^2}{R^2}) + 1) \qquad \rho \ge R \tag{5}$$

$$= -\frac{\mu_0 I}{4\pi} \frac{\rho^2}{R^2} \qquad \rho < R. \tag{6}$$

In the system we consider there are two wires. If the wires are both of length l, we know that the total potential energy is given by

$$W = \frac{1}{2} \int \vec{J} \cdot \vec{A} d\vec{x} = \frac{1}{2} \int \vec{J}^a \cdot \vec{A}^a d\vec{x}^a + \frac{1}{2} \int \vec{J}^b \cdot \vec{A}^b d\vec{x}^b$$
 (7)

$$= \frac{l}{2} \left(\frac{I}{\pi a^2}\right) \int_0^{2\pi} \int_0^a A_z^{\text{inside a}}(\rho_a) d\rho_a d\phi_1 + \frac{l}{2} \left(\frac{I}{\pi b^2}\right) \int_0^{2\pi} \int_0^b A_z^{\text{inside b}}(\rho_b) d\rho_b d\phi_1 \quad (8)$$

$$= \frac{l}{2} \frac{I}{\pi a^2} \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \int_0^a \left[\log \frac{\rho_b^2}{b^2} + 1 - \frac{\rho_a^2}{a^2} \right] d\rho_a d\phi_1 + \frac{l}{2} \frac{I}{\pi b^2} \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \int_0^b \left[\log \frac{\rho_a^2}{a^2} + 1 - \frac{\rho_b^2}{b^2} \right] d\rho_b d\phi_2$$
(9)

Figure 2:

$$= \frac{l}{2} \frac{I}{\pi a^2} \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \int_0^a \left[\log \frac{\rho_a^2 + d^2 - 2d\rho_a \cos\phi_1}{b^2} + 1 - \frac{\rho_a^2}{a^2} \right] d\rho_a d\phi_1$$
 (10)

$$+\frac{l}{2}\frac{I}{\pi b^2}\frac{\mu_0 I}{4\pi} \int_0^{2\pi} \int_0^b \left[\log \frac{\rho_b^2 + d^2 - 2d\rho_b cos\phi_2}{b^2} + 1 - \frac{\rho_b^2}{b^2}\right] d\rho_b d\phi_2 \tag{11}$$

Figure 3:

The most challenging integrals to perform are those of the form

$$\frac{1}{b^2} \int_0^b \int_0^{2\pi} \left[\log\left(\frac{d^2 + \rho_b^2 - 2d\rho_b cos\phi_2}{a^2}\right) \right] d\phi_2 \rho_b d\rho_b. \tag{12}$$

We perform the ϕ_2 integral first, taking advantage of the fact that for s > 1

$$\int_0^{2\pi} \log(s - \cos\phi) d\phi = 2\pi \log(\frac{1}{2}(s + \sqrt{s^2 - 1})),\tag{13}$$

which can be established via contour integration (as is done in the appendix), Mathematica, or checking a standard table of integrals. This implies

$$\int_0^{2\pi} \log(a^2 + b^2 - 2ab\cos\phi)d\phi = 2\pi \log(2ab) + \int_0^{2\pi} \log(\frac{a^2 + b^2}{2ab} - \cos\phi)d\phi$$
 (14)

$$= 2\pi \log(2ab) + 2\pi \log(\frac{1}{2}(\frac{a^2 + b^2}{2ab} + \sqrt{(\frac{a^2 + b^2}{2ab})^2 - 1}))$$
 (15)

$$=2\pi\log(\frac{1}{2}(a^2+b^2+\sqrt{(a^2+b^2)^2-4a^2b^2}))$$
 (16)

$$=2\pi\log(\frac{1}{2}(a^2+b^2+\sqrt{(a^2-b^2)^2}))$$
(17)

$$=2\pi\log(\max(a^2, b^2)). \tag{18}$$

So,

$$\frac{1}{b^2} \int_0^b \int_0^{2\pi} \left[\log\left(\frac{d^2 + \rho_b^2 - 2d\rho_b cos\phi_2}{a^2}\right) \right] d\phi_2 \rho_b d\rho_b \tag{19}$$

$$=\frac{2\pi}{b^2}\int_0^b \log(\frac{d^2}{a^2})\rho_b d\rho_b \tag{20}$$

$$=2\pi\log(\frac{d}{a})\tag{21}$$

A similar argument shows that

$$\frac{1}{b^2} \int_0^a \int_0^{2\pi} \left[\log\left(\frac{d^2 + \rho_a^2 - 2d\rho_a \cos\phi_1}{b^2}\right) \right] d\phi_1 \rho_a d\rho_a \tag{22}$$

$$=2\pi\log(\frac{d}{b}). (23)$$

Using these integrals, we find that

$$W = \frac{l}{2} \frac{\mu_0}{4\pi} (\frac{1}{2} + 2\log\frac{d}{b})I^2 + \frac{l}{2} \frac{\mu_0}{4\pi} (\frac{1}{2} + 2\log\frac{d}{a})I^2$$
 (24)

$$= \frac{l}{2} \frac{\mu_0}{4\pi} (1 + 2\log \frac{d^2}{ab}) I^2 = \frac{l}{2} (\frac{L}{2}) I^2, \tag{25}$$

which implies

$$\frac{L}{l} = \frac{\mu_0}{4\pi} (1 + 2\log\frac{d^2}{ab}). \tag{26}$$

5.29

From the discussion at the beginning of section (5.13), we know that both the \vec{B} and \vec{E} fields are in the x,y plane, and that the \vec{E} is parallel to \hat{n} at the surface while \vec{B} is perpendicular. From the fact that $B_z = 0$ and $E_z = 0$, we can show from Maxwell's equations that $\vec{B} = \pm \sqrt{\mu \epsilon} \hat{z} \times \vec{E}$. In particular,

$$\frac{\partial \vec{E}}{\partial z} = \frac{\partial \vec{B}}{\partial t} \tag{27}$$

and

$$\frac{\partial \vec{B}}{\partial z} = -\mu \epsilon \frac{\partial \vec{E}}{\partial t},\tag{28}$$

together imply that

$$\frac{\partial^2 \vec{E}}{\partial z^2} = -\mu \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} \tag{29}$$

and

$$\frac{\partial^2 \vec{B}}{\partial z^2} = -\mu \epsilon \frac{\partial^2 \vec{B}}{\partial t^2},\tag{30}$$

which means that

$$\vec{B}(x,y,z,t) = \vec{B^{+}}(x,y,t - \sqrt{\mu\epsilon}z) + \vec{B^{-}}(x,y,t + \sqrt{\mu\epsilon}z), \tag{31}$$

and similarly for \vec{E} . Substituting these forms into Eq. (27) and (28) shows that $\vec{B} = \pm \sqrt{\mu \epsilon} \hat{z} \times \vec{E}$. The important point is that $\vec{E}(x,y,z,t)$ and $\vec{B}(x,y,z,t)$ have proportional magnitudes but orthogonal directions.

Figure 4:

Now, the inductance per unit length is given by

$$l = \lim_{\Delta z \to 0} \frac{F_{\Delta z}}{I} = \frac{\mu}{I} \lim_{\Delta z \to 0} \int \int \vec{B} \cdot d\vec{a_s} = \frac{\mu}{I} \int_a^{a'} \vec{B} \cdot \vec{n'} dl' = -\mu \frac{\int_a^{a'} \vec{B} \cdot \vec{n'} dl'}{\oint_c \vec{B} \cdot d\vec{l}}, (32)$$

whereas the capacitance per unit length is given by

$$c = \frac{Q_{\Delta z}^{enclosed}}{V} = \frac{\epsilon}{V} \lim_{\Delta z \to 0} \int \int_{s} E \cdot d\vec{a_{s}} = \frac{\epsilon}{V} \oint_{c} \vec{E} \cdot \hat{n} dl = \epsilon \frac{\oint_{c} \vec{E} \cdot \hat{n} dl}{-\int_{c}^{a'} \vec{E} \cdot d\vec{l'}}, \quad (33)$$

where we have considered the a segment of the transmission line of length Δz , and let $\Delta z \to 0$.

So, we find that

$$cl = -\mu \frac{\int_{a}^{a'} \vec{B} \cdot \vec{n'} dl'}{\oint_{c} \vec{B} \cdot d\vec{l}} \epsilon \frac{\oint_{c} \vec{E} \cdot \hat{n} dl}{-\int_{a}^{a'} \vec{E} \cdot d\vec{l'}}$$
(34)

$$= \mu \epsilon \frac{\int_{a}^{a'} (\hat{z} \times \vec{E}) \cdot \vec{n'} dl'}{\oint_{c} (\hat{z} \times \vec{E}) \cdot d\vec{l}} \frac{\oint_{c} \vec{E} \cdot \hat{n} dl}{\int_{a}^{a'} \vec{E} \cdot d\vec{l'}}$$
(35)

$$= \mu \epsilon \frac{\int_{a}^{a'} \vec{E} \cdot d\vec{l'}}{\oint_{c} \vec{E} \cdot \hat{n} dl} \frac{\oint_{c} \vec{E} \cdot \hat{n} dl}{\int_{a}^{a'} \vec{E} \cdot d\vec{l'}}$$
(36)

$$= \mu \epsilon \tag{37}$$

5.33

(a)

The mutual inductance is given by

$$M_{12}(\vec{R}) = \frac{\mu_0}{4\pi} \oint \oint \frac{d\vec{l_1} \cdot d\vec{l_2}}{|\vec{x_1} - \vec{x_2} + \vec{R}|},$$
 (38)

which implies

$$\vec{\nabla}_R M_{12}(\vec{R}) = \frac{\mu_0}{4\pi} \oint \vec{\nabla}_R (\frac{1}{|\vec{x_1} - \vec{x_2} + \vec{R}|}) d\vec{l_1} \cdot d\vec{l_2}$$
 (39)

Figure 5:

$$= -\frac{\mu_0}{4\pi} \oint \oint (\frac{\vec{x_1} - \vec{x_2} + \vec{R}}{|\vec{x_1} - \vec{x_2} + \vec{R}|^3}) d\vec{l_1} \cdot d\vec{l_2} = -\frac{\mu_0}{4\pi} \oint \oint (\frac{\vec{x_{12}}}{|\vec{x_{12}}|^3}) d\vec{l_1} \cdot d\vec{l_2}. \tag{40}$$

Combining this with Eq. (5.10),

$$\vec{F}_{12} = -\frac{\mu_0}{4\pi} I_1 I_2 \oint \oint \frac{(d\vec{l}_1 \cdot d\vec{l}_2) \vec{x}_{12}}{|\vec{x}_{12}|^3},\tag{41}$$

we find

$$\vec{F}_{12} = I_1 I_2 \vec{\nabla}_R M_{12}(\vec{R}). \tag{42}$$

(b) Well,

$$\nabla_R^2 M_{12}(\vec{R}) = \frac{\mu_0}{4\pi} \oint \oint \nabla_R^2 \left(\frac{1}{|\vec{x_1} - \vec{x_2} + \vec{R}|}\right) d\vec{l_1} \cdot d\vec{l_2}$$
 (43)

$$= \frac{\mu_0}{4\pi} \oint \oint (-4\pi\delta(\vec{x_1} - \vec{x_2} + \vec{R})) d\vec{l_1} \cdot d\vec{l_2} = \mu_0 \oint \oint \delta(\vec{x_1} - \vec{x_2} + \vec{R}) d\vec{l_1} \cdot d\vec{l_2}. \tag{44}$$

We restrict to the situation $\vec{x_1} - \vec{x_2} + \vec{R} \neq 0$ – we do not want our loops to touch each other. In this case, $\delta(\vec{x_1} - \vec{x_2} + \vec{R}) = 0$ over the range of integrations, so we find

$$\nabla_R^2 M_{12}(\vec{R}) = 0. {45}$$

6.1

a) The retarded solution is

$$\psi^{+}(\vec{x},t) = \int \frac{\delta(x')\delta(y')\delta(t - \frac{|\vec{x} - \vec{x'}|}{c})}{|\vec{x} - \vec{x'}|} dx'dy'dz'. \tag{46}$$

Doing the x' and y' integrations, we find

$$\psi^{+}(\vec{x},t) = \int \frac{\delta(t - \frac{\sqrt{x^2 + y^2 + (z - z')^2}}{c})}{\sqrt{x^2 + y^2 + (z - z')^2}} dz'.$$
 (47)

We can now take advantage of the fact that $\int \delta(f(z'))g(z)dz' = \sum_{z_0} \frac{g(z_0)}{|f'(z_0)|}$, where z_0 are the values of z for which f(z) = 0. Now, for $\sqrt{x^2 + y^2} > ct$ the argument of the delta function is always less than zero, so that we have

$$\psi(\vec{x}, t < \frac{\sqrt{x^2 + y^2}}{c}) = 0. \tag{48}$$

For $\sqrt{x^2 + y^2} < ct$ the argument in the delta function has two zeros, and the above formula allows us to find

$$\psi(\vec{x}, t > \frac{\sqrt{x^2 + y^2}}{c}) = \frac{c}{\sqrt{c^2 t^2 - x^2 - y^2}}.$$
 (49)

Combining these, we get the result

$$\psi(\vec{x},t) = \Theta(ct - \sqrt{x^2 + y^2}) \frac{2c}{\sqrt{c^2t^2 - x^2 - y^2}}.$$
 (50)

b)

We can use the result of (a) to help solve this question. In particular,

$$\psi^{+}(\vec{x},t) = \int \frac{\delta(x')\delta(t - \frac{|\vec{x} - \vec{x'}|}{c})}{|\vec{x} - \vec{x'}|} dx'dy'dz'$$
(51)

$$= \int \left(\int \frac{\delta(t - \frac{\sqrt{x^2 + (y - y')^2 + (z - z')^2}}{c})}{\sqrt{x^2 + (y - y')^2 + (z - z')^2}} dz' \right) dy'$$
 (52)

$$= \int \Theta(ct - \sqrt{x^2 + (y - y')^2}) \frac{2c}{\sqrt{c^2t^2 - x^2 - (y - y')^2}} dy'.$$
 (53)

Now, if ct < |x|, for all y', the theta function factor is zero. So,

$$\psi^{+}(\vec{x}, t < \frac{|x|}{c}) = 0. \tag{54}$$

For ct > |x|,

$$\psi^{+}(\vec{x}, t > \frac{|x|}{c}) = \int \Theta(ct - \sqrt{x^2 + (y - y')^2}) \frac{2c}{\sqrt{c^2 t^2 - x^2 - (y - y')^2}} dy'$$
 (55)

$$= \int_{y-\sqrt{c^2t^2-x^2}}^{y+\sqrt{c^2t^2-x^2}} \frac{2c}{\sqrt{c^2t^2-x^2-(y-y')^2}} dy'$$
 (56)

$$= \left[2c\sin^{-1}\left(\frac{y'-y}{\sqrt{c^2t^2-x^2}}\right)\right]_{y-\sqrt{c^2t^2-x^2}}^{y+\sqrt{c^2t^2-x^2}} = 2\pi c \tag{57}$$

Combining these two regimes gives

$$\psi^{+}(\vec{x},t) = 2\pi c\Theta(ct - |x|). \tag{58}$$

Appendix

We will show that for s > 1

$$\int_0^{2\pi} \log(s - \cos\phi) d\phi = 2\pi \log(\frac{1}{2}(s + \sqrt{s^2 - 1})). \tag{59}$$

To begin with, define

$$I(s) = \int_0^{2\pi} \log(s - \cos\phi) d\phi \tag{60}$$

Notice that it is also true that

$$I(s) = \int_0^{2\pi} \log(s + \cos\phi) d\phi. \tag{61}$$

Then,

$$I'(s) = \int_0^{2\pi} \frac{1}{s + \cos\phi} d\phi = \int_{\gamma} \frac{1}{s + (1/2)(z + 1/z)} \frac{dz}{iz},\tag{62}$$

where γ is the unit circle in the complex plane.

Now

$$\int_{\gamma} \frac{1}{s + (1/2)(z + 1/z)} \frac{dz}{iz} = \int_{\gamma} \frac{-2i}{z^2 + 2sz + 1} dz \tag{63}$$

$$= \int_{\gamma} \frac{-2i}{(z+s+\sqrt{s^2-1})(z+d-\sqrt{s^2-1})} dz \tag{64}$$

$$=\frac{2\pi}{\sqrt{s^2-1}},$$
 (65)

where we have noted that $\frac{-2i}{(z+s+\sqrt{s^2-1})(z+s-\sqrt{s^2-1})}$ has one residue inside γ at $z=\sqrt{s^2-1}-s$.

Now,

$$I'(s) = \frac{2\pi}{\sqrt{s^2 - 1}},\tag{66}$$

SO

$$I(s) = 2\pi \log(s + \sqrt{s^2 - 1}) + C. \tag{67}$$

In the limit of large s, we must have

$$I(s) \to 2\pi \log(s),$$
 (68)

which allows us to identify the constant as $-2\pi \log 2$. Thus,

$$I(s) = 2\pi \log(s + \sqrt{s^2 - 1}) - 2\pi \log 2 = 2\pi \log(\frac{1}{2}(s + \sqrt{s^2 - 1}))$$
 (69)