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5.26

Figure 1:

To find the magnetic field due to a single wire, we use Ampere’s law:



Letting p be the radial distance to the wire, on the outside of the wire we
find
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On the inside, we get
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where R is the radius of the wire. Using the relation 6 x A = B, we find
that B, = —%AZ, which implies
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In the system we consider there are two wires. If the wires are both of
length [, we know that the total potential energy is given by
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Figure 3:
The most challenging integrals to perform are those of the form
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We perform the ¢, integral first, taking advantage of the fact that
for s > 1
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which can be established via contour integration (as is done in the ap-
pendix), Mathematica, or checking a standard table of integrals. This implies
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Using these integrals, we find that
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5.29

From the discussion at the beginning of section (5.13), we know that both
the B and E fields are in the x,y plane, and that the E is paralell to n at
the surface while B is perpendicular. From the fact that B, = 0 and E, = 0,
we can show from Maxwell’s equations that B= +\/ ez x E. In particular,
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B(x,y,z,t) = B*(x,y,t — \Juez) + B~ (z,y,t + \/jiez), (31)

and similarly for E. Substituting these forms into Eq. (27) and (28) shows
that B = +,/uezx E. The important point is that E(z,y, z,t) and B(z,vy, 2, t)
have proportional magnitutes but orthogonal directions.



Figure 4:



Now, the inductance per unit length is given by
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whereas the capacitance per unit length is given by
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where we have considered the a segment of the transmission line of length
Az, and let Az — 0.
So, we find that
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The mutual inductance is given by
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Figure 5:
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Combining this with Eq. (5.10),
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We restrict to the situation z; — 22 + R # 0 — we do not want our loops
to touch each other. In this case, §(z7 — 23 + R) = 0 over the range of
integrations, so we find



VaMis(R) = 0. (45)

6.1

a)The retarded solution is
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Doing the ' and 3 integrations, we find
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where zy are the values of z for which f(z) = 0. Now, for v/z? + y? > ct the

argument of the delta function is always less than zero, so that we have
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For /z? + y? < ct the argument in the delta function has two zeros, and
the above formula allows us to find
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Combining these, we get the result
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We can use the result of (a) to help solve this question. In particular,
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Now, if ¢t < |z|, for all ¢, the theta function factor is zero. So,
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Combining these two regimes gives

P (Zt) = 27O (ct — |z]).

Appendix

We will show that for s > 1
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To begin with, define
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Notice that it is also true that
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Then,
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where v is the unit circle in the complex plane.
Now
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where we have noted that

at z =vs2—1—s.
Now,
27
I'(s) = ,
(s) -
SO

I(s) =2mlog(s + Vs —1)+C.

In the limit of large s, we must have
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which allows us to identify the constant as —27log 2. Thus,
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has one residue inside 7
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