## Problem Set #5

Ph 106c, Spring 2004 Due Thursday, March 13, 2004

- 1. Jackson 6.11
- 2. Jackson 7.3
- 3. The proper time interval  $d\tau$  is defined by  $d\tau^2 = dt^2 dx^2 dy^2 dz^2 = dx_{\mu}dx^{\mu}$ . Using this, we can define the four-velocity  $u^{\alpha}$  as  $u^{\alpha} = dx^{\alpha}/d\tau$ . The four-velocity  $u^{\alpha}$  corresponds to an ordinary velocity vector  $\vec{v} = d\vec{x}/dt$ . Express:
  - (a)  $u^0$  in terms of  $|\vec{v}|$
  - (b)  $u^j$  in terms of  $\vec{v}$  (Here j=1,2,3)
  - (c)  $u^0$  in terms of  $u^j$
  - (d)  $d/d\tau$  in terms of d/dt and  $\vec{v}$
  - (e)  $\vec{v}$  in terms of  $u^j$
  - (f)  $|\vec{v}|$  in terms of  $u^0$
- 4. Frame K' moves with velocity  $\vec{\beta}$  with respect to frame K. A rod of length  $L_0$  is at rest in K', with its axis oriented at an angle  $\theta'$  with respect to the direction of the relative motion of the two frames. Find the corresponding length L and angle  $\theta$  in frame K.
- 5. Find the  $4 \times 4$  matrix for the Lorentz transformation consisting of a boost  $v_x$  in the x-direction, followed by a boost  $v_y$  in the y-direction. Is the transformation the same if you perform the boosts in the reverse order?
- 6. According to an observer in frame K, the two frames  $K'_1$  and  $K'_2$  move at velocities  $\vec{v}_1$  and  $\vec{v}_2$ . Show that the velocity of frame  $K'_2$  as seen from  $K'_1$  obeys

$$v^{2} = \frac{(\vec{v}_{1} - \vec{v}_{2})^{2} - (\vec{v}_{1} \times \vec{v}_{2})^{2}}{(1 - \vec{v}_{1} \cdot \vec{v}_{2})^{2}}$$