# SPIRE Temperature Control/ Sub-K Thermal Model

Version 0.2 Darren Dowell 2009 Jun 15

## **Thermal Model**



- Parameter heritage:
  - R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>PTC</sub> from Jamie's "PTC Analysis\_3.doc" and "PTC\_IST\_1.doc"
    - caveat: mostly from PFM5 data.
    - R<sub>1</sub> looks about the same in flight (PTC power up test).
  - $C_{\text{BDA}}$  is based on observed flight  $\tau_{\text{BDA}}$  of ~400 sec.

# Temperature Fluctuations in Absence of Control

- Caused by (at least) two effects:
  - Variable T<sub>base</sub> over fridge cycle
  - Variable P<sub>BDA</sub> power input from L0 temperature fluctuations

 Strong constraint on control: only control power is P<sub>PTC</sub>

## SUBKTEMP Control / T<sub>base</sub> Fluctuations



 $\Delta T$  = -0.9

 4/7 = 0.6 of T<sub>base</sub> fluctuations leak through to focal plane (at low frequency, even with perfect control on SUBKTEMP).



 2/13 = 0.2 of T<sub>base</sub> fluctuations leak through to focal plane (at low frequency, with perfect control on PTC).



- $\Delta T = 0.7$
- No T<sub>base</sub> fluctuations leak through to focal plane at low frequency, but can't control fluctuations at intermediate frequencies.

# Control of T<sub>base</sub> Fluctuations

leakage dT(BDA)/dT(base)



• Caveat: the curve for BDA control is only roughly confirmed through simulation.

### SUBKTEMP Control / P<sub>BDA</sub> Fluctuations



- Control acts to keep total power flowing into fridge constant.
- PTC has opposite temperature response of focal plane, with 1/18 of magnitude.

### PTC Control / P<sub>BDA</sub> Fluctuations



• Effect on BDA not much different from case of SUBKTEMP control.

## To-Do List

- Model AC response in case of P<sub>BDA</sub> fluctuations.
- Also need to describe issues from thermometer noise and operational constraints.