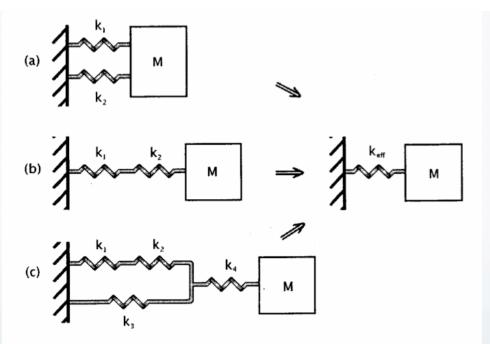
Physics 1A, Section 2

October 28, 2010



The restoring force on a spring is governed by Hooke's Law, F = -kx. Springs are linear devices, so any combination of springs can be modelled as a single spring with an effective spring constant $F = -k_{\text{eff}}x$. Refer to the diagram for parts (a), (b), and (c). Your final answers will not depend on M.

(a) (2 points) Derive the relation between k_1 , k_2 , and k_{eff} for springs attached in parallel. You should find:

$$k_{\text{eff}} = k_1 + k_2 \tag{1}$$

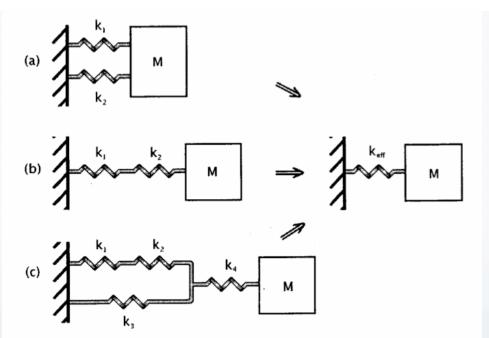
(b) (3 points) Derive the relation between k_1 , k_2 , and k_{eff} for springs attached in series. You should find:

$$\frac{1}{k_{\text{eff}}} = \frac{1}{k_1} + \frac{1}{k_2} \tag{2}$$

Hint: Consider the balance of forces at the junction of the two springs.

(c) (2 points) Find k_{eff} for the illustrated system. The springs are attached by rigid rods and do not bend.

- Answer:
- a)
- b)
- c) { $[k_3 + (k_1^{-1} + k_2^{-1})^{-1}]^{-1} + k_4^{-1}]^{-1}$



The restoring force on a spring is governed by Hooke's Law, F = -kx. Springs are linear devices, so any combination of springs can be modelled as a single spring with an effective spring constant $F = -k_{\text{eff}}x$. Refer to the diagram for parts (a), (b), and (c). Your final answers will not depend on M.

(a) (2 points) Derive the relation between k_1 , k_2 , and k_{eff} for springs attached in parallel. You should find:

$$k_{\text{eff}} = k_1 + k_2 \tag{1}$$

(b) (3 points) Derive the relation between k_1 , k_2 , and k_{eff} for springs attached in series. You should find:

$$\frac{1}{k_{\text{eff}}} = \frac{1}{k_1} + \frac{1}{k_2} \tag{2}$$

Hint: Consider the balance of forces at the junction of the two springs.

(c) (2 points) Find k_{eff} for the illustrated system. The springs are attached by rigid rods and do not bend.

Energy Conservation

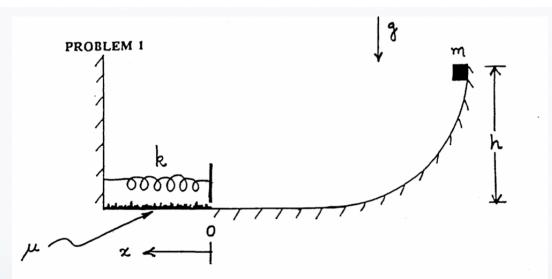
- Energy is conserved: K + U + heat + ... = constant
- Sometimes, *mechanical* energy is conserved:
 - K + U = mechanical energy = constant
 - Example: $\frac{1}{2}$ mv² + mgh = constant
 - > This often allows a quick solution of a difficult problem.

Energy Conservation

- Energy is conserved: K + U + heat + ... = constant
- Sometimes, *mechanical* energy is conserved:
 - K + U = mechanical energy = constant
 - Example: $\frac{1}{2}$ mv² + mgh = constant
 - > This often allows a quick solution of a difficult problem.
- However, in other cases, mechanical energy is not conserved, so K + U ≠ constant:
 - > friction: Energy is lost to heat.
 - > inelastic collision: Energy is lost to heat.
 - This is the same thing as saying the force can't be described by a potential energy; the force is a function of some variable other than position.

Energy Conservation

- Energy is conserved: K + U + heat + ... = constant
- Sometimes, *mechanical* energy is conserved:
 - K + U = mechanical energy = constant
 - Example: $\frac{1}{2}$ mv² + mgh = constant
 - > This often allows a quick solution of a difficult problem.
- However, in other cases, mechanical energy is not conserved, so K + U ≠ constant:
 - > friction: Energy is lost to heat.
 - > inelastic collision: Energy is lost to heat.
 - This is the same thing as saying the force can't be described by a potential energy; the force is a function of some variable other than position.
 - In some of those cases, one can resort to using the force to calculate the energy added to the system: energy input = W = SF•ds

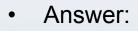


A block of mass m starts at rest and slides down a frictionless circular ramp from a height h. At the bottom, it hits a massless spring with spring constant k and in addition begins to experience a frictional force. The coefficient of kinetic friction is given by μ .

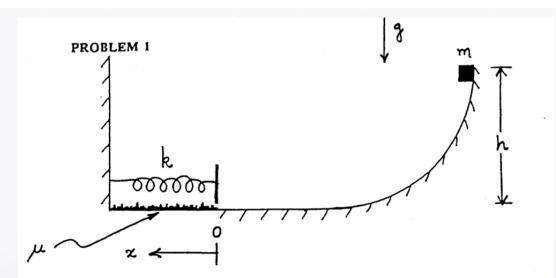
- (1 point) (a) What is the speed of the block at the bottom of the ramp just before it hits the spring?
- (2 points)(b) Find the total horizontal force on the mass after it hits the spring as a function of the coordinate x given in the diagram.

The mass first comes to rest instantaneously at $x=x_s$. It then rebounds back up the ramp, reaching a maximum height h' < h. In the following, express your answer in terms of x_s :

- (2 points) (c) What is the total work done on the mass by the spring and friction between x=0 and $x=x_s$?
- (2 points) (d) What is the total energy W_f that has been dissipated by friction when the spring first returns to x=0?
- (2 points) (e) Find the vertical height h' up the ramp to which the block rebounds. You may express your answer in terms of W_f.
- (1 point) (f) Find x_s in terms of the quantities shown above.



- a) v = sqrt(2gh)
- b) $F = -kx \mu mg$, to the right
- c) W = $-kx_s^2/2 \mu mgx_s$
- d) $W_f = 2\mu mg x_s$
- e) h' = $h 2\mu x_s$
- f) $x_s = [-\mu mg + sqrt(\mu^2 m^2 g^2 + 2kmgh)]/k$



A block of mass m starts at rest and slides down a frictionless circular ramp from a height h. At the bottom, it hits a massless spring with spring constant k and in addition begins to experience a frictional force. The coefficient of kinetic friction is given by μ .

- (1 point) (a) What is the speed of the block at the bottom of the ramp just before it hits the spring?
- (2 points)(b) Find the total horizontal force on the mass after it hits the spring as a function of the coordinate x given in the diagram.

The mass first comes to rest instantaneously at $x=x_s$. It then rebounds back up the ramp, reaching a maximum height h' < h. In the following, express your answer in terms of x_s :

- (2 points) (c) What is the total work done on the mass by the spring and friction between x=0 and x=x_s?
- (2 points) (d) What is the total energy W_f that has been dissipated by friction when the spring first returns to x=0?
- (2 points) (e) Find the vertical height h' up the ramp to which the block rebounds. You may express your answer in terms of W_f.
- (1 point) (f) Find x_s in terms of the quantities shown above.

Monday, November 1:

something to do with potential energy