

Problem Solving Hints: Normal Force and Friction

- suggested order:
 - 1) draw gravity and other fixed external forces (direction and magnitude are unambiguous)
 - 2) draw normal force (prevents interpenetration of objects)
 - 3) draw friction force (perpendicular to normal force)
- kinetic friction:

 $\begin{aligned} \textbf{F} &= \mu_k \textbf{N} \\ &\text{direction opposite to relative velocity} \end{aligned}$

static friction:

 $F \le \mu_s N$

direction and magnitude to prevent relative acceleration

Quiz Problem 11: static & kinetic friction

Upon an inclined plane of angle \square is placed a block of mass m_2 . Upon m_2 is placed another block of mass m_1 .

The coefficient of static friction between m_2 and the inclined plane is μ_{2s} and the coefficient of sliding friction is μ_{2k} .

Likewise, the coefficient of static friction between m_1 and m_2 is μ_{1s} and the coefficient of sliding friction is μ_{1k} .

A force F upward and parallel to the plane is applied to m2.

(2 points) (a) What is the acceleration of m_2 when m_1 just starts to slip on it?

(**2 points**) (b) What is the maximum value of *F* before this slipping takes place?

Quiz Problem

11

- Answer:
- a) $a = g(\mu_{1s}\cos\theta \sin\theta)$
- b) $F = (m_1 + m_2)g(\mu_{2k} + \mu_{1s})\cos\theta$

Upon an inclined plane of angle \square is placed a block of mass m_2 . Upon m_2 is placed another block of mass m_1 .

The coefficient of static friction between m_2 and the inclined plane is μ_{2s} and the coefficient of sliding friction is μ_{2k} .

Likewise, the coefficient of static friction between m_1 and m_2 is μ_{1s} and the coefficient of sliding friction is μ_{1k} .

A force F upward and parallel to the plane is applied to m2.

(2 points) (a) What is the acceleration of m_2 when m_1 just starts to slip on it?

(**2 points**) (b) What is the maximum value of *F* before this slipping takes place?

Tension in a Rope Draped over a Table

mass per unit length ρ

relevant for HW QP20

Tension in a Rope Draped over a Table

Fictitious (Inertial) Forces

- Accelerating (non-inertial) frames:
 - Linear acceleration:
 - Fictitous force ma opposite direction of acceleration
 - Rotating frame:
 - **Solution** Fictitious force mω²r outward
 - (If an object is moving with respect to the rotating frame, there is also a fictitious Coriolis force on it.)
- Why introduce fictitious forces and work in noninertial frame?
 - Often simplifies solution of the problem.

Quiz Problem 29

A block of mass m sits on the bottom of an inclined plane of angle θ and friction μ . The whole assembly is inside a car, and the incline is fixed to the car's floor. Throughout the problem, assume the block remains in contact with the incline.

- (a) (1 point) The car takes off with acceleration A to the right. Describe the ficticious force needed in the rest frame of the car. What is its magnitude and direction on the block?
- (b) (2 points) Assuming the block begins to move up the incline, draw a force diagram and write down Newton's laws.
- (c) (3 points) Solve for the acceleration of the block up the incline, in terms of A, θ , μ and g. If A=2g and the coefficient of friction $\mu=0.5$, what is the condition on θ so that the block will indeed move up the incline?

Quiz Problem 29

A block of mass m sits on the bottom of an inclined plane of angle θ and friction μ . The whole assembly is inside a car, and the incline is fixed to the car's floor. Throughout the problem, assume the block remains in contact with the incline.

- a) mA to the left
- b) $ma = mA\cos\theta mg\sin\theta \mu N$, $N = m(A\sin\theta + g\cos\theta)$
- c) $a = A(\cos\theta \mu\sin\theta) g(\mu\cos\theta + \sin\theta)$; $\theta < 37^{\circ}$

nt) The car takes off with acceleration A to the right. Describe the us force needed in the rest frame of the car. What is its magnitude and

A

nts) Assuming the block begins to move up the incline, draw a force diagram and write down Newton's laws.

(c) (3 points) Solve for the acceleration of the block up the incline, in terms of A, θ , μ and g. If A=2g and the coefficient of friction $\mu=0.5$, what is the condition on θ so that the block will indeed move up the incline?

on on the block?

Homework due Wednesday

- I think the intention is for you to work these problems in non-inertial frames with fictitious forces:
 - QP21
 - QP28
- but they can be solved without that.
- Good practice to try in non-inertial frame.

- Quiz Problem 49 (springs)
- Quiz Problem 50 (energy)

Optional, but helpful, to try these in advance.