Physics 1A, Section 2 October 7, 2010

Quiz #1

- covers:
 - Frautschi et al., chapters 1-3
 - lectures/sections through yesterday (Oct. 6)
 - homework #1
- due Monday at noon

Reference Frames

- See Frautschi section 4.3 for an introduction to the concept.
- elevator problem from homework #1:
 - The elevator reaches a velocity of v_o = 0.5 m/s just before it reaches the second floor. At this point the velocity remains constant at 0.5 m/s. As it passes the second floor you again drop the ball from a height of 2 m above the floor.
 - (3 points) (c) How long does it take the ball to hit the floor of the elevator?

Quiz Prob. 19

Robin Hood is standing at the foot of a hill which makes an angle α with the horizontal. For practicing his recently learnt Phys 1a formulas, he shoots an arrow from a point on the hill, with initial velocity v_0 and under an angle $\beta > \alpha$ with the horizontal. Neglect both the size of the arrow and air friction.

- (a) (2 points) Express the time needed for the arrow to land in terms of α , β , v_0 , and the gravitational acceleration g.
- (b) (1 point) Show that the distance between the origin and the place of landing is given by

$$l = \frac{2v_0^2}{g\cos^2(\alpha)}\sin(\beta - \alpha)\cos(\beta).$$

Quiz Prob. 19

Robin Hood is standing at the foot of a hill which makes an angle α with the horizontal. For practicing his recently learnt Phys 1a formulas, he shoots an arrow from a point on the hill, with initial velocity v_0 and under an angle $\beta > \alpha$ with the horizontal. Neglect both the size of the arrow and air friction.

- (a) (2 points) Express the time needed for the arrow to land in terms of α , β , v_0 , and the gravitational acceleration g.
- (b) (1 point) Show that the distance between the origin and the place of landing is given by

$$l = \frac{2v_0^2}{g\cos^2(\alpha)}\sin(\beta - \alpha)\cos(\beta).$$

Answer:

a)
$$t = 2 v_0 \sin(\beta - \alpha) / (g \cos \alpha)$$

Final Prob.

Cannon A is located on a plain a distance L from a wall of height H. On top of this wall is an identical cannon (cannon B).

Ignore air resistance throughout this problem. Also ignore the size of the cannons relative to L and H.

(3 points) (a) The two groups of gunners aim the cannons directly at each other. They fire at each other simultaneously,

with equal muzzle speeds v_0 . What is the value v_{\min} of v_0 for which the two cannon balls collide just as

they hit the ground?

(3 points) (b) Describe what happens for muzzle velocities greater than v_{\min} and less than v_{\min} ?

Final Prob.

- Answer:
 - a) $v_{min} = (1/2)[g(H^2+L^2)/H]^{1/2}$
 - b) v>v_{min}: collide
 - v<v_{min}: hit ground first

Cannon A is located on a plain a distance L from a wall of height H. On top of this wall is an identical cannon (cannon B).

Ignore air resistance throughout this problem. Also ignore the size of the cannons relative to L and H.

(3 points) (a) The two groups of gunners aim the cannons directly at each other. They fire at each other simultaneously,

with equal muzzle speeds v_0 . What is the value v_{\min} of v_0 for which the two cannon balls collide just as

they hit the ground?

(3 points) (b) Describe what happens for muzzle velocities greater than v_{\min} and less than v_{\min} ?

Monday, October 11:

- Quiz Problem 18 (vectors)
- Quiz Problem 27 (vectors)
- Optional, but helpful, to try these problems in advance