Physics 1A, Section 2

November 8, 2010

Quiz #3

+ was due 3 hours ago.

Crash Course in Collision Problems

- OAssume collision happens in an instant.
 - Describe "before" and "after" cases, nearly simultaneous.
 - During collision, ignore relatively weak external forces, compared to strong impulsive forces.
- Momentum is conserved:
 - $\Sigma m_i v_i = constant$
- OKinetic energy:
 - elastic: $\Sigma / v_i^2 = constant$
 - (partially) inelastic: $\Sigma 1/2 m_i v_i^2$ decreases
 - completely inelastic: objects stick to each other

Crash Course in Collision Problems

- OAssume collision happ Quadratic equation required in
 - Describe "before" ar
 - During collision, ig compared to stron
- OMomentum is conse
 - $\sum m_i \mathbf{v}_i = \mathbf{constant}$
- general → algebra more challenging.

 To simplify: work in frame with one object at rest, or in center of mass frame.

eous.

- OKinetic energy:
 - elastic: $\Sigma^{1}/_{2}$ m_iv_i² = constant
 - (partially) inelastic: Σ / v_i^2 decreases
 - completely inelastic: objects stick to each other

Crash Course in Collision Problems

- OAssume collision happens in an instant.
 - Describe "before" and "after"

During collision, ignore relacement to strong impression

OMomentum is conserved.

• $\Sigma m_j \mathbf{v}_j = \mathbf{constant}$

Algebra much simpler, since there is only one "unknown" (velocity of combined object).

OKinetic energy:

- elastic: $\Sigma^{1}/_{2}$ m_iv_i² = constant
- (partially) inelastic: $\Sigma 1/2 m_i v_i^2$ de ases
- completely inelastic: objects stick to each other

Final Problem

Problem 1: Stay and Sway

A mass m_1 sits on a frictionless surface and is attached to one end of a spring with spring constant k. The other end of the spring is attached to the wall. The mass and the spring are initially at rest.

A second mass m_2 comes sliding in with velocity $-v\,\hat{x}$, hits the first mass m_1 at time t=0, and sticks to it. This induces oscillations in the spring, which can then be measured. This in turn can be used to determine the mass m_2 of the impinging object.

- (3 points) (a) What is the velocity \vec{v}' of the two masses immediately after the collision? Express you answer in terms of v, m_1 , and m_2 .
- (3 points) (b) Find an expression for m_2 in terms of m_1 , k, and the angular frequency ω_o of the observed oscillations.

A function which describes the position of the two masses for all time following the collision is $x = A\sin(\omega_o t) + B\cos(\omega_o t)$ where A and B are unknown constants, t = 0 is the time of the collision, and x = 0 is the equilibrium position of the spring.

(4 points) (c) What are the values of A and B? Express you answer in terms of ω_o , m_1 , m_2 , and v.

Oscillation Problems

- basic oscillator (no damping or forcing): mass on spring, pendulum:
 - \rightarrow d²x/dt² + ω_0^2 x = 0
 - > Trial solution:
 - \triangle x = A cos(ω_0 t) + B sin(ω_0 t)
 - A and B are determined by initial conditions, often x(t=0) and dx/dt(t=0).
- For oscillator with damping and/or forcing, see box on p. 330 of Frautschi et al.

Final Problem

19

- Answer:
- a) $v' = v m_2/(m_1 + m_2)$, in -x direction
- b) $m_2 = k/\omega_0^2 m_1$
- c) A = $-m_2 v/sqrt[k(m_1+m_2)]$, B = 0

Problem 1: Stay and Sway

A mass m_1 sits on a frictionless surface and is attached to one end of a spring with spring constant k. The other end of the spring is attached to the wall. The mass and the spring are initially at rest.

A second mass m_2 comes sliding in with velocity $-v\,\hat{x}$, hits the first mass m_1 at time t=0, and sticks to it. This induces oscillations in the spring, which can then be measured. This in turn can be used to determine the mass m_2 of the impinging object.

- (3 points) (a) What is the velocity \vec{v}' of the two masses immediately after the collision? Express you answer in terms of v, m_1 , and m_2 .
- (3 points) (b) Find an expression for m_2 in terms of m_1 , k, and the angular frequency ω_o of the observed oscillations.

A function which describes the position of the two masses for all time following the collision is $x = A\sin(\omega_o t) + B\cos(\omega_o t)$ where A and B are unknown constants, t = 0 is the time of the collision, and x = 0 is the equilibrium position of the spring.

(4 points) (c) What are the values of A and B? Express you answer in terms of ω_o , m_1 , m_2 , and v.

Thursday, November 11:

- + Quiz Problem 53 (oscillation and rotation)
- + Quiz Problem 25 (rotational motion)

+ Optional, but helpful, to try these in advance.