Course Index and Review: PHYSICS 1A, 2008

D. Dowell, December 2008

based on The Mechanical Universe ("TMU") and homework problems ("QP" and "FP"). Mistakes? Please email to cdd@submm.caltech.edu .

- web sites approved for access during final
 - homework & quiz solutions: http://www.its.caltech.edu/~tmu/ph1a/solutions.htm
 - section lectures: http://www.submm.caltech.edu/~cdd/PHYS1A_2008
- math help
 - derivatives: TMU Table 3.1; TMU §5.6; HW1/TMU3.10, HW1/TMU3.13, Quiz2.2
 - integrals: TMU Tables 3.2 & 3.3; TMU eq. 10.13-10.14
 - vectors and vector operations: TMU p. 105; HW2/QP9, HW2/QP43, Quiz2.2
 - $* \vec{A} \cdot \vec{B} = ABcos\theta$
 - * $|\vec{A} \times \vec{B}| = ABsin\theta$; direction of $\vec{A} \times \vec{B}$ is perpendicular to both \vec{A} and \vec{B} .
 - center of mass: TMU §14.2; HW7/FP5
 - moment of inertia: TMU Table 14.1; HW7/QP15, HW7/QP16, HW7/FP5
 - ellipses: TMU Figures 16.8, 16.12
- velocity and acceleration
 - If acceleration is constant, see HW1/QP1, HW1/QP17, Quiz1.1
 - * projectile motion: HW2/TMU4.17, HW2/TMU4.20, HW6/QP6, Quiz1.2
 - If acceleration is not constant, use derivatives: $\vec{v} = \frac{d\vec{s}}{dt}, \vec{a} = \frac{d\vec{v}}{dt}$; HW1/QP1, HW4/QP20
 - * uniform circular motion: centripetal $a = \frac{v^2}{r}$ (inward); HW3/TMU7.16, HW3/TMU7.17, HW6/QP6, Quiz2.1, Quiz3.1
- angular velocity and acceleration:
 - Equations look similar to ones for linear velocity and acceleration. See TMU Tables 14.2 & 14.3.
- forces
 - A force accelerates the center of mass: $\vec{F} = m\vec{a}$: HW3/QP3, HW3/QP4
 - An off-center force also causes rotational acceleration of solid body:
 - * torque $\vec{\tau} = \vec{r} \times \vec{F}$; HW7/QP16, HW8/FP17
 - * $\tau = I\alpha$, I = moment of inertia, $\alpha = \frac{d^2\theta}{dt^2}$; Quiz4.1
 - Newton's third law: Forces come in pairs (action-reaction).
 - free-body diagrams: show all of the forces. Often the first step in solving a problem. See: HW3/QP3, HW3/QP4
 - Forces encountered in this class:

- * applied (external) force
- * normal force: perpendicular to area of contact; resists interpenetration; HW3/QP4, HW4/QP21, Quiz3.1
- * weight: $\vec{F} = m\vec{g}$; HW3/QP3, HW3/QP4, HW3/TMU7.17
- * frictional force: $F = \mu N$; HW4/QP21, HW6/FP10, HW7/QP16
 - · $\mu = \mu_{kinetic}$ if relative motion; force in opposite direction of velocity
 - $\mu = \mu_{static}$ if not in relative motion; force in direction which resists motion; better to write as $F \leq \mu_{static} N$ or as $F = \mu_{minimum} N$.
 - One example of static friction is rolling without slipping, which gives a constraint $\alpha = \frac{a}{R}$ (could be negative depending on how directions drawn), $\alpha =$ angular acceleration, a = acceleration of rolling object; Quiz4.2
- * tension force (e.g., rope): HW3/QP3, HW3/QP4, HW4/QP20, Quiz2.1
- * spring force: $F = -k \Delta x$; direction is toward equilibrium position
- * gravitational force: $F = \frac{GmM}{r^2}$, toward the other mass (attractive); HW3/TMU7.16, HW9/FP6, Quiz2.1
- * buoyancy force: upward force with magnitude equal to weight of displaced fluid (Archimedes' Principle); HW8/FP11, HW8/FP17
- frames of reference
 - inertial frames: TMU §9
 - noninertial frames: TMU §9
 - * Fictitious force in uniformly accelerating frame: $-m\vec{a}$; TMU §9.3-9.4
 - * Fictitious force in a rotating frame: $\frac{mv^2}{r}$ outward (centrifugal); HW4/QP21, HW4/QP28, HW4/TMU9.6
- conservation laws: often the path to a quicker solution, compared to using F = ma
 - momentum: If there are no outside forces acting, then momentum $\vec{p} = \Sigma m_i \vec{v}_i$ is constant.
 - * Useful reference frames: one object is stationary, or center of mass is stationary.
 - angular momentum: If there are no outside torques acting, then angular momentum $\vec{L} = \Sigma m_i \vec{r_i} \times \vec{v_i}$ is constant. See HW7/FP8
 - * Useful reference frames: pivot point, or the center of mass.
 - * For a rigid body, spin angular momentum is $\vec{L}_{spin}=I\vec{\omega}.$
 - * Orbital angular momentum of a system of particles is $\vec{L}_{orbit} = m\vec{r}_{center of mass} \times \vec{v}_{center of mass}$.
 - energy: If forces can be accounted for by a potential, then total mechanical energy E = K + U is constant.
 - * Useful reference points: the ground, the surface of a fluid, the equilibrium position of a spring, or infinite distance away.
 - * Kinetic friction cannot be expressed by a potential, so when kinetic friction is nonzero, energy is not conserved. See HW5/TMU10.32.

- * The other forces in the course can be expressed by a potential:
 - · weight: U = mgh; HW5/TMU10.11, HW6/QP6
 - · spring: $U = \frac{1}{2}kx^2$; HW6/QP6
 - gravity: $U = \frac{-GmM}{r}$
- * kinetic energy:
 - · translation: $K = \frac{1}{2}mv^2$; HW5/TMU10.11
 - · rotation: $K = \frac{1}{2}I\omega^2$
- * Outside forces perform work on (add energy to) the system according to: $W = \int \vec{F} \cdot d\vec{s}$. HW6/QP6
- collisions: HW6/FP2, HW7/FP8, HW7/QP15, Quiz3.1, Quiz3.2
 - Basic assumption is that collision happens fast. Internal collision forces are impulsive, meaning strong but brief.
 - If no outside impulsive forces act, apply conservation of momentum.
 - If no outside impulsive torques act, apply conservation of angular momentum.
 - If the collision is completely elastic, apply conservation of (kinetic) energy.
 - If the collision is completely inelastic (things stick together), do not apply conservation of energy. Conservation of linear and/or angular momentum should be enough to solve the problem.
- two-body orbits: HW9/FP4, HW9/FP12, HW9/FP18
 - Angular momentum is constant.
 - Total mechanical energy is constant.
 - * E < 0: elliptical orbit, massive object at a focus (Kepler's First Law)
 - · semi-major axis $a: E = \frac{-GmM}{2a}$
 - · period T: $T^2 = \frac{4\pi^2}{GM}a^3$ (Kepler's Third Law)
 - * E = 0: parabolic trajectory
 - * E > 0: hyperbolic trajectory
 - · escape velocity: $v = \sqrt{\frac{2GM}{R}}$; HW5/TMU10.25, HW9/FP6
- oscillations: HW6/FP10, HW8/FP11, HW8/FP17, Quiz4.1
 - Equation of motion for simple harmonic oscillator looks like: $m\frac{d^2x}{dt^2} + kx + C = 0$, k a positive constant.
 - General solution is $x = A \sin \omega t + B \cos \omega t + x_0$.
 - * Use equation of motion to solve for ω and x_0 .
 - * Use initial conditions to get A and B.
 - Example: mass on a spring
 - Simple pendulum and physical pendulum are also approximately simple harmonic oscillators, because $\sin \theta \approx \theta$: HW7/FP5.
 - For damped and/or forced oscillators, see TMU p. 330.

- fluid mechanics
 - continuity equation for incompressible fluid: $v_1A_1 = v_2A_2$; HW8/FP3a
 - Archimedes' Principle for buoyant force: The buyoant force of an immersed body has the same magnitude as the weight of the fluid displaced by the body. See HW8/FP11, HW8/FP17.
 - Bernoulli's Equation: Along a streamline, $\frac{1}{2}\rho v^2 + \rho g y + p = \text{constant. See HW8/FP3b.}$
- miscellaneous
 - period T, frequency f, angular frequency ω : $\omega = 2\pi f = \frac{2\pi}{T}$
 - circular motion: $\omega = \frac{d\theta}{dt} = \frac{v}{r}$