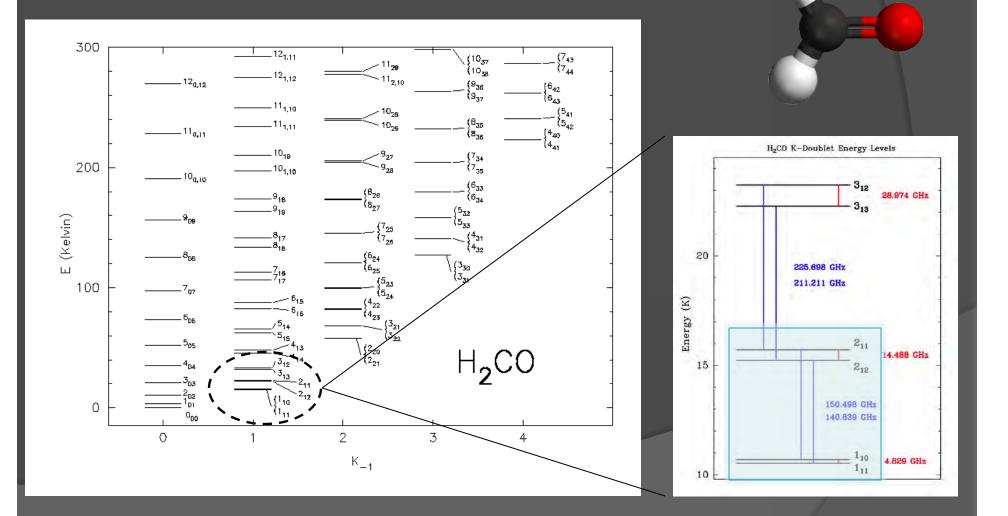
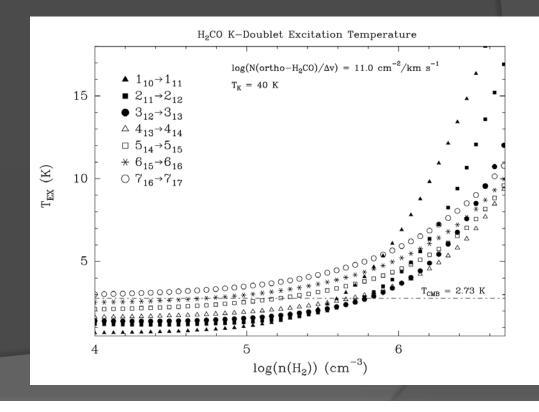
DENSITOMETRY AND THERMOMETRY OF STARBURST GALAXIES


Jeff Mangum (NRAO) Jeremy Darling (CU Boulder) Karl Menten (MPIfR Bonn) Christian Henkel (MPIfR Bonn) Meredith MacGregor (NRAO / Harvard University) Brian Svoboda (NRAO / Western Washington University)

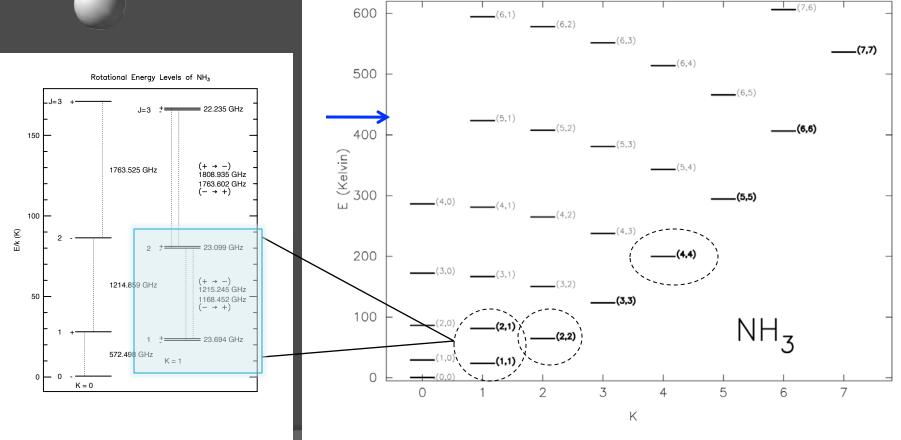
The Tools

Opensitometry


- Formaldehyde (H₂CO)
- Slightly asymmetric rotor molecule (κ = -0.96)
- K-doublet energy level splitting
- Thermometry
 - Ammonia (NH₃)
 - Symmetric rotor molecule
 - Rotation-inversion energy level splitting
- LVG model to fit multi-transition measurements from both molecules

H₂CO Energy Level Structure



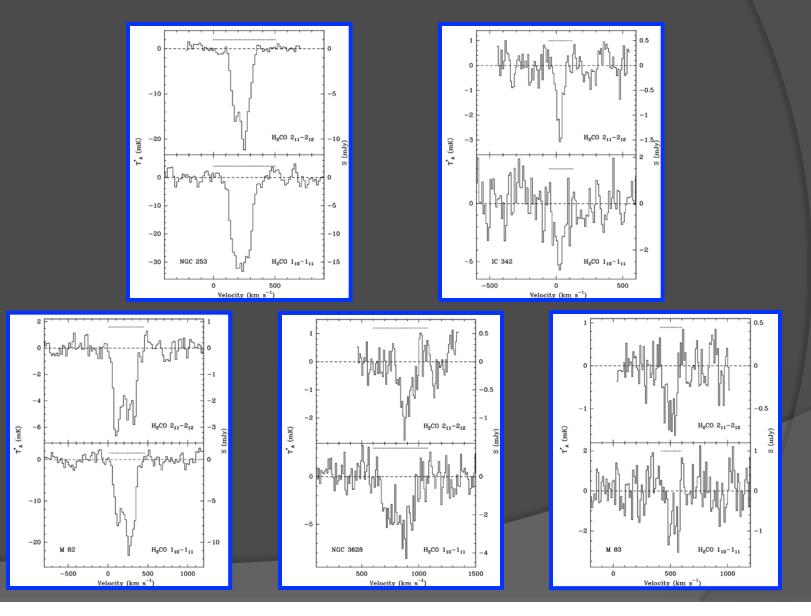

K-Doublet Excitation

- In-plane collisions with H₂ produce an excess of molecules in the 1₁₁ and 2₁₂ (lower) energy states at low densities.
- In the second second
- $n(H_2) < 10^{5.6} \text{ cm}^{-3} \rightarrow \text{K-Doublet absorption}$
- $n(H_2) \ge 10^{5.6} \text{ cm}^{-3} \rightarrow \text{K-Doublet emission}$

NH₃ Energy Level Structure

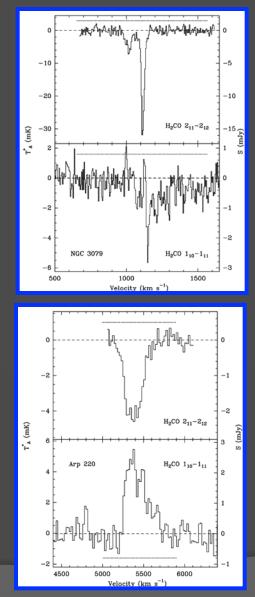
H₂CO and NH₃ in Starburst Galaxies

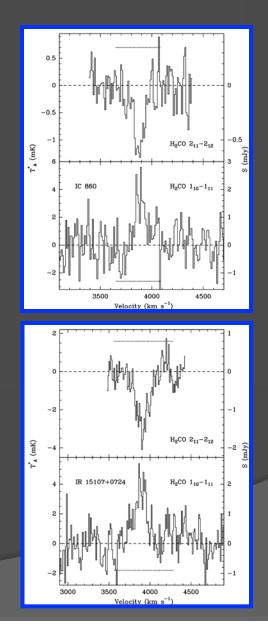
- Selection criteria:
 - Dec (J2000) > -40 deg
 - L(60µm) > 50 Jy and/or
 - Bright HCN and CO emission
- H_2CO
 - Green Bank Telescope ($\theta_{b} = 51$ and 153 arcsec)
 - 26 of 56 galaxies detected in at least one H₂CO transition
 - 1_{10} - 1_{11} emission/absorption = 6/19
 - 2_{11} - 2_{12} emission/absorption = 0/13
 - 17 of 26 detections are new extragalactic discoveries of H₂CO

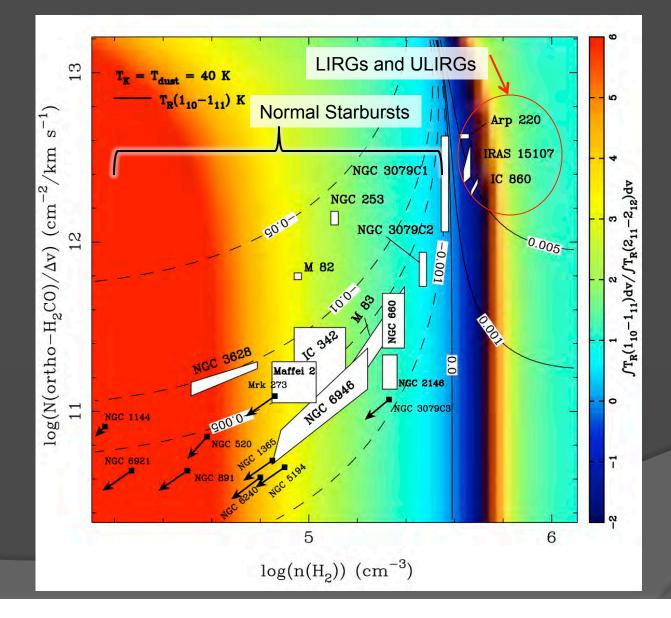

 \circ NH₃

- GBT ($\theta_{\rm b}$ = 30 arcsec)
- 12 of 19 galaxies detected in at least one NH₃ transition
- NH_3 emission/absorption = 7/5
- 4 of 12 detections new discoveries of extragalactic NH₃

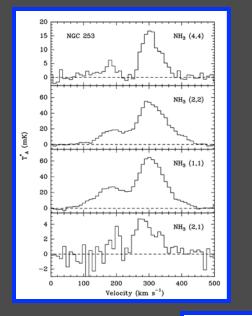
Source	α (J2000)	8 (J2000)	$\frac{v_{hel}}{(km s^{-1})}$	$\frac{D_L^{b}}{(Mpc)}$	T _{dust} e (K)	Classification ^d
NGC 55	00:14:54.5	-39:11:19	129	1.7		SB(s)m: edge-on
NGC 224	00:42:44.8	+41:16:13	-300	0.8		SA(s)b LINER
NGC 253	00:47:33.1	-25:17:18	251	2.5	34	SAB(s)c
IC 1623	01:07:47.2	-17:30:25	6028	81.0	39	***
NGC 520	01:24:35.3	-03:47:37	2281	30.4	38	Pec, Pair, Sbrst
NGC 598	01:33:54.0	+30:40:07	-179	0.9	1444	SA(s)cd
NGC 660	01:43:01.7	-13:38:36	856	14.0	37	SB(s)appec, HILLIN
IR 01418+1651	01:44:30.5	+17:06:09	8101	110.0		LIRG
NGC 695	01:51:14.9	+22:34:57	9769	134.0	34	SO pec:LIRG
Mrk 1027	02:14:05.6	+05:10:24	9061	120.5	37	ELIRG
NGC 891	02:22:33.4	-42:20:57	529	8.6	28	SA(s)b?:sn
NGC 925	02:27:16.9	+33:34:35	553	9.9		SAB(s)d
NGC 1022	02:38:32.7	-06:40:39	1503	18.5	39	SB(s)a
NGC 1055	02:41:45.2	-00:26:35	996	15.0	29	SBb:sp:Sv2 LINER
Maffei 2	02:41:55,1	+59:36:15	-17	3.1		SAB(rs)bc
NGC 1068	02:42:40.7	-00:00:48	1136	13.7	40	SA(rs)b:Sy1/2
UGC 02369	02:54:01.8	+14:58:15	9262	125.2	-	DBL
NGC 1144	02:55:12.2	-00:11:01	8750	118.5	32	Spec
NGC 1365	03:33:36.4	-36:08:25	1652	17.9	32	SBb(s)b
IR 03359+1523	03:38:47.1	+15:32:53	10507	145.6		LIRG
IC 342	03:46:49.7	-68:05:45	31	3.7	30	SAB(rs)cd
NGC 1614	04:33:59.8	-08:34:44	4847	64.2	46	SB(s)c:pec
VIIZw31	05:16:46.4	+79:40:13	16290	222.5	34	
NGC 2146	06:18:37.7	+78:21:25	918	16.5	38	SB(s)ab;pec
NGC 2623	08:38:24.1	+25:45:17	5535	102.0		LIRG
Arp 55	09:15:55.1	-44:19:55	11957	159.4	36	Pair
NGC 2903	09:32:10.1	-21:30:02	556	6.2	29	SB(s)d
IGC 5101	09:35:51.6	+61.21.11	11810	157.5	36	SvL5. LINER
M 82	09:55:52.2	-69:40:47	203	3.5	45	10.Sbrst
NGC 3079	10:01:57.8	+55:40:47	1150	16.2	32	SB(s)c. LINER
IR 10173+0828	10:19:59.9	+08:13:34	14716	196.2		Sbrst
NGC 3227	10:23:30.7	+19:52:46	1111	20.8	+++	SAB(s):pec
NGC 3627	11:20:15.0	+12:59:30	727	10.2	30	SAB(s)b:LINER
NGC 3628	11:20:17.2	+13:35:20	847	9.6	30	Shiperisp
NGC 3690	11:28:32.2	+58:33:44	3121	43.9		Merger
NGC 4631	12:42:08.0	-32:32:29	606	7.3	30	SB(s)d
NGC 4736	12:50:53.0	+41:07:14	308	5.1	***	SA(r)ab;Sy2;LINER
Mrk 231	12:56:14.2	+56:52:25	12642	175.1		SA(rs)cipec
NGC 5005	13:10:56.2	+37:03:33	946	18.1	28	SAB(rs)bc
IC 860	13:15:04.1	+24:37:01	3866	51.5	111	Sa. Sbrst
NGC 5194	13:29:52.7	+47:11:43	463			SA(s)bc:pec
M 83	13:37:00.9	-29:51:57	518	3.7	31	SAB(s)c
Mrk 273	13:44:42.1	+55:53:13	11324	156.7	48	LINER
NGC 5457	14:03:12.6	+54:20:57	241	7.0		SAB(rs)cd
R 15107+0724	15:13:13.1	+07:13:27	3897	52.0		Shest
Arp 220	10:34:07.1	$\pm 23:30:11$	0434	72.0	44	Pair, Sbrat
VGC 6240	16:52:59.0	+02:24:02	7339	97.9	41	Repect LINER, Sy.
R 17208-0014	17:23:21.9	-00:17:00	12834	177.1	46	ULIRG
R 17468+1320	17:49:06.7	+13:19:54	4881	65.1		Sbrst
NGC 6701	18:43:12.4	+60:39:12	3950	57.2	32	SB(s)a
NGC 6921	20:28:28.8	-25:43:24	4399	62.3	34	SA(r)0/a
NGC 6946	20:34:52.3	+60:09:14	48	5.5	30	SAB(rs)cd
C 5179	22:16:09.1	-36:50:37	3447	44.2	33	SA(rs)bc
NGC 7331	22:37:04.1	+34:24:56	821	14.2	28	SA(s)b;LINER
NGC 7479	23:04:56.6	+12:19:22	2385	32.4	36	SB(s)c;LINER
R 23365+3604	23:39:01.3	+36:21:09	19330	267.5	45	SBacpec;LINER
Mrk 331	23:51:26.7	+20:35:10	5422	78.1	41	LIRG

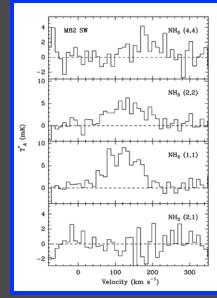

H₂CO in Starburst Galaxies

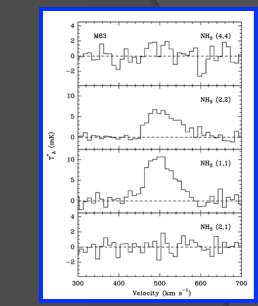

 1_{10} 1_{11} absorption and 2_{11} 2_{12} absorption

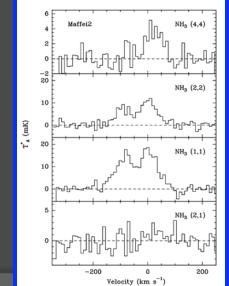

H₂CO in Starburst Galaxies

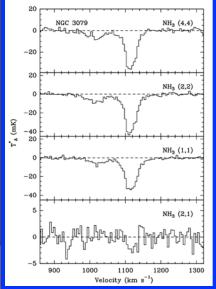
 1_{10} - 1_{11} emission and 2_{11} - 2_{12} absorption

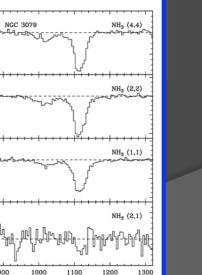


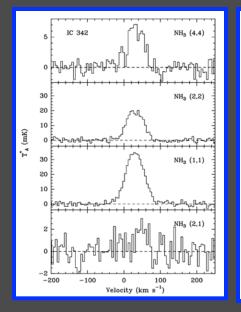


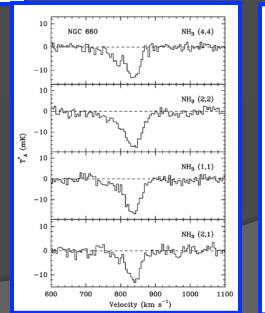

Starburst Galaxy Densitometry

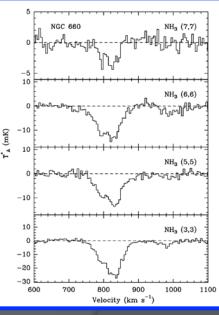



NH₃ in Starburst Galaxies



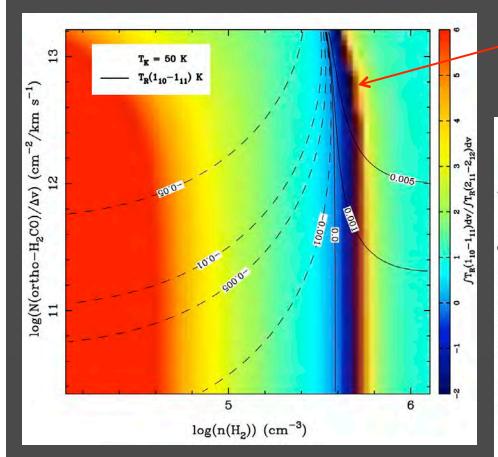




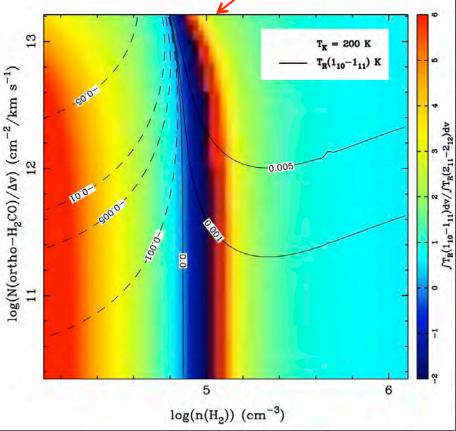


(More) NH₃ in Starburst Galaxies

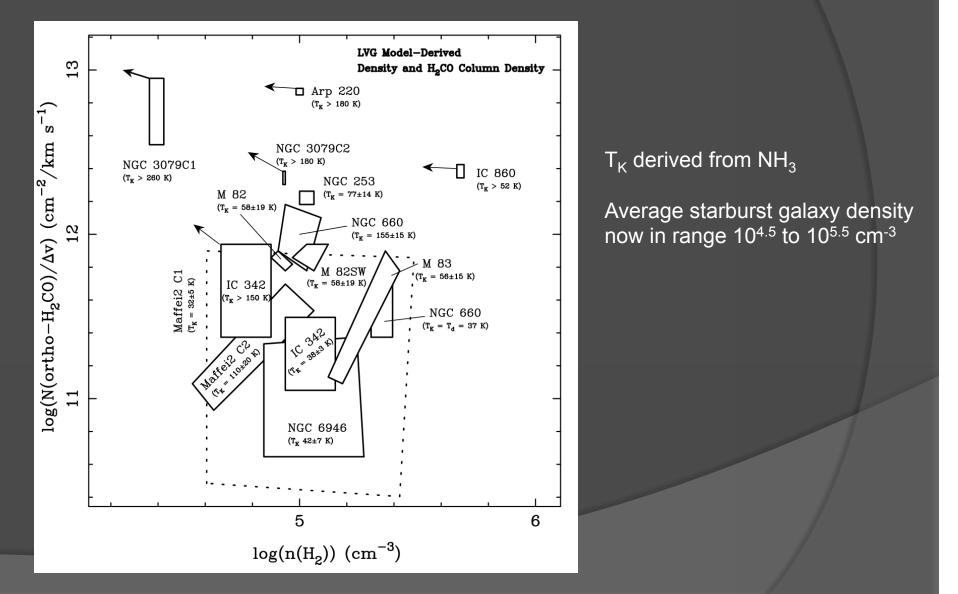
IC 342 NH₃ (7,7) NH₃ (6,6) T'A (mK) NH₃ (5,5) 30 NH₃ (3,3) 20 10 والمعاربة ويتالع 0 5 ~~R______ L-3-11 -200 -1000 100 200 Velocity (km s⁻¹)


Thermometry

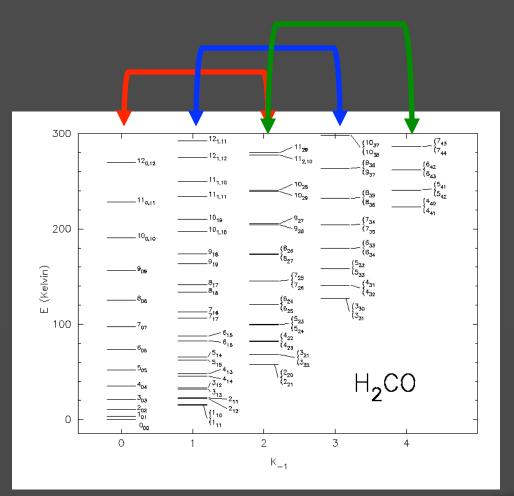
- NH_3 (1,1), (2,2) and (4,4) measurements toward all galaxies.
- NH₃ (3,3), (5,5), (6,6), and (7,7) toward IC342 and NGC660.
- Multiple temperature components noted in several galaxies.
- Most galaxies have kinetic temperatures significantly larger than their measured dust temperatures.
- Evidence for mechanical or CR heating.


Source	Tdust	T_K		
	(K)	(K)		
NGC 253	34	77 ± 14		
NGC 253 NE		$42 \pm 5 / 69 \pm 10$		
NGC 253 SW		69 ± 2		
NGC 660	37	215 ± 65		
NGC 660 G1		> 145		
NGC 660 G2		$\simeq 150$		
NGC 660 G3		230 ± 50		
NGC 660 G4		180 ± 30		
NGC 891	28	< 30		
Maffei 2G1/G2	40^{a}	32 ± 5 / 110 ± 20		
NGC 1365	32	50 ± 11		
NGC 1365 G1		86 ± 26		
$\rm NGC1365G2$		29 ± 6		
IC 342	30	~ 150		
IC 342 G1		$24 \pm 7/115 \pm 17/> 140$		
IC 342 G2	444	$75 \pm 14 / > 185$		
M 82 SW	45	58 ± 19		
$\rm NGC3079G1/G2$	32	both > 270		
IC 860	40^{d}	200 ± 40		
M 83	31	56 ± 15		
Arp 220	44	> 180		
NGC 6946	30	42 ± 7		
NGC 6946 G1		26 ± 3		
NGC 6946 G2		71 ± 20		

^aAssumed value.


Densitometry With Thermometry

Note how absorption/emission transition density shifts from high to low density as temperature increases


Densitometry With Thermometry

Conclusions

- H₂CO is a very sensitive tracer of physical conditions in both galactic and extragalactic star formation environments.
- First *measurements* of the mean density in starburst galaxies.
- Measurements of the kinetic temperature critical to proper interpretation of densitometry.
- Mean density roughly the same (10^{4.5} 10^{5.5} cm⁻³) in all starburst galaxies measured. This implies that the Schmidt-Kennicutt relation between L_{IR} and M_{dense}:
 - Is a measure of the dense gas <u>mass</u> reservoir available to form stars.
 - Has nothing to do with a higher average density driving the star formation process in the most luminous starburst galaxies.

Studies of H₂CO with CCAT

Mangum & Wootten 1993, ApJS, 89, 123

- λ = 150 to 350 µm
- High-Excitation $\Delta J=1$ Transitions
 - J = 13-12 at 965 GHz
 - E_u ≅ 370 K
- Inter-Ladder Transitions
 - K=2 to K=0: 150-300 µm
 - K=3 to K=1: 100-150 µm
 - K=4 to K=2: 80-100 μm
 - S_{ij} ≅ 0.001 to 0.01

"What spectral lines are most important for mapping?"

What molecules are most important for imaging physical conditions?