Prospects for high resolution spectroscopy with CCAT

Naylor et al CH⁺ with SPIRE

Absorption spectroscopy for CCAT : lessons from Herschel

Herschel spectroscopy : medium resolution (SPIRE/ PACS) to high resolution (HIFI)

Strong emission lines CO, 13CO, CI, CII, OI, NII, OIII (H₂O, OH)

Strong absorption lines, especially ground state hydride lines

Many weaker features (emission & absorption)

Examples : I the line of sights to W49N

Examples : II Arp220 & N4418

- Submillimeter and FIR spectrum dominated by absorption (Sturm et al, Gonzalez-Alfonso et al)
- Ground state & high energy lines of H_2O , OH, HCN • reactive ions (OH⁺, H_2O^+ , CH⁺)
- Difference with Mrk 231 : same lines but emission
- Broad & complex line profiles : OH, H2O tracers of energetic phenomena : massive outflows, winds
 High critical density : extremely dense and hot gas , FIR excitation => neighborhood of AGN ?

Arp 220 Spire Rangwala et al

Arp 220 & NGC4418 OH, H_2O , HCN absorption in excited states (Eu > 500K) Gonzalez-Alfonso et al

Also HCO⁺(4-3) P-Cyg profiles with SMA (0.3", Sakamoto)

Hydrides

built in the first
 chemical
 steps
 starting from atomic gas

- at the root of interstellar chemistry

- Diagnostics of physical / chemical processes

Hydrides as diagnostics : H₂ column density

Sheffer et al 2008

•CH ground state triplet at 532 & 536 GHz.

- Other triplet 2THz
- Lines not saturated but complex profiles
- •Combination of emission & absorption
- •N(CH) ~ few 10^{14} cm⁻²

•CH & HF consistent with $CH/H_2 \sim 3.5 \ 10^{-8}$ derived from UV/visible

 $\tau(CH) \sim N(H_2)/10^{21}$

Methylidyne CH

Gerin et al A&A 521

536 GHz

532 GHz

Hydrogen fluoride HF

- Fluorine reacts with H₂, making HF
- (Neufeld et al)
- => HF uses all the gas phase F
- => HF reveals H_2
- => HF is present as soon as H₂ is present, even in clouds with no detectable CO or H₂O.
- => $\tau(HF) > \tau(p-H,O)$

 $\tau(HF) \sim N(H_{2})/10^{20} (dv = 1 km/s)^{-1}$

Neufeld et al 2010a A&A

CH : relation with other molecules : linear scaling => constant abundance ratio

Hydrides as diagnostics : ζ cosmic ray ionization rate

Cosmic rays : ionization source for H and H_2 in neutral gas The charge can be transferred to molecular ions. The abundance scales with $\boldsymbol{\zeta}$

$$\mathrm{H_2^+} + \mathrm{H_2} \longrightarrow \mathrm{H_3^+}$$

 $H^{+} + O \rightarrow O^{+} \quad ; \quad O^{+} + H_{2} \rightarrow OH^{+} + H$ $OH^{+} + H_{2} \rightarrow H_{2}O^{+} + H \quad ; \quad H_{2}O^{+} + H_{2} \rightarrow H_{3}O^{+} + H$

$\mathbf{OH}^+, \mathbf{H}_2\mathbf{O}^+, \mathbf{H}_3\mathbf{O}^+$

- => Analytic expression (Neufeld et al 2010 & in prep) n(OH^+)/n(H_2O^+)= 0.64 + 0.12 (T/300K)^{-0.5}/f(H_2) $OH^+/H_2O^+ > 4$
- => OH⁺ mostly in atomic gas with a small fraction of H₂ (< 10%) OH⁺/H ~ 3 x 10⁻⁸ H₂O⁺/H ~ 3 x10⁻⁹
- O+ formed by charge transfer between O and H⁺
- => OH⁺ & H₂O⁺ sensitive to ζ , the ionization rate due to cosmic rays $\zeta(H) = 0.6 - 2.4 \ 10^{-16} \ s^{-1}$

- The OH⁺/H₂O⁺ ratio traces the H₂ fraction in gas where it is measured
 - Typical values ~ 5 indicate clouds that are primarily ATOMIC
- The OH⁺ abundance probes the cosmic ray ionization rate
 - Typical values indicate cosmic ray ionization rates ~ 10⁻¹⁶ s⁻¹ per H atom
 - As for HF, the sideband gain ratio is critical when the optical depth is large. Here, the existence of hyperfine structure can provide valuable constraints.
 - Recent results from W51 are shown at the right (Neufeld et al. in preparation)

Hydrides as diagnostics : turbulence

CH⁺ & SH⁺ : Reactive ions formed in endothermic reactions with H₂ with several 1000 K.

Need an energy source for activating the reaction ==> dissipative regions of turbulence exhibit the right properties : heating + ion-neutral drift => efficient formation of CH⁺ and SH⁺ & consequences for the diffuse medium chemistry.

==> Alternative : Intense FUV or X-ray radiation in dense molecular gas.

Hydride as diagnostics : abundances and chemical evolution

HCl, H₂Cl⁺ and HCl⁺ have ground state transitions in the submillimeter => Simultaneous observations of ³⁵Cl and ³⁷Cl

> Also ${}^{12}CH^{+} \& {}^{13}CH^{+}$ $H_{2}O, HDO, H_{2}{}^{18}O ...$

Prospects for CCAT : I The Galactic Center

- The most nearby Galactic nucleus
- Active (massive) star formation (i.e. the Arches cluster)
- Massive black hole
- Energetic radiation (X-ray, cosmic rays, γ rays, positrons, etc.) + strong variability (flares, echoes)
- Gas dynamics : bar structure
- Magnetic field

=> Laboratory for star formation in starburst galaxies

Galactic center open issues

ISM phases :

- Massive GMCs with warm gas and cold dust (shock heated ?)
- Warm diffuse gas traced by H3+ absorption
- •Hot bubbles

Relative distribution of the stars and gas phases, filling factors ? Heating sources ? Role of cosmic rays, X-rays & γ rays ? Relation to Galactic structure and feedback

H_{3}^{+} in the central molecular zone,

Geballe & Oka, Goto et al.

Low density 50 - 100 cm $^{-3}$, High Temp \sim 250 K High ζ \sim 10 $^{-15}$ s $^{-1}$

Interstellar hydrides in absorption toward bright continuum sources in the Galactic Center

Recent spectrum toward the Sgr A +50 km/s cloud shows a spectacular absorption line spectrum with absorption detectable over an LSR velocity range of over 200 km/s

Galactic Center with CCAT

Maps of molecular emission lines trace the GMCs

Extended dust emission => Maps of absorption lines using the cold dust emission as background. Structure & physical conditions of the warm diffuse gas + variability in relation with SgrA* activity (eg Terrier et al. 2010)

So far few H_3^+ data (limited by number of stars)

CCAT can perform surveys of OH^+ , ¹³CH⁺, SH^+ , H_2O^+ . H_2Cl^+ , HDO, ...

Needs high spectral resolution (km/s)

Perspectives for CCAT : starburst & active galaxies

- Winds and energetic phenomena => broad absorption lines & P-Cygni profiles. OH, H_2O
- Radiation diagnostics associated to AGN vicinity (eg NGC1068, Centarus A), OH⁺ ?
- Search for absorption from excited lines (HCN, HCO⁺)
- Diffuse ISM in external regions (for edge-on systems)

=> Medium spectral resolution, good sensitivity

Perspectives for CCAT : distant universe

- Molecular lines offer sensitive probes of ISM content : gas mass, gas density, energetics, ionization rate, ionization fraction, etc.
- Molecule excitation \rightarrow CMB temperature

• new spectral lines => new possibilities of testing possible drifts of fundamental constants (eg comparison of NH_3 rotational and inversion lines is sensitive to me/mp Henkel et al 2010), also H_3O^+

APM 08279+5255 Neufeld et al 2011& Bradford et al with Zspec

- No HF (nucleosynthesis ?)
- Strong H₂O emission

PKS1830-2822 Menten et al APEX $H_2O \& NH_3$ absorption ALMA + CCAT ?

Recommended lines for absorption studies

Local objects : z = 0

Hydrides :

H₂S, p-NH₂, p-H₂O⁺, HCl, H₂Cl⁺, SH⁺, ¹³CH⁺, HDO, OH⁺ Other interesting species CI, HCO⁺, HOC⁺ CN, CCH, c-C₂H₂, HCN, HNC, H₂CO, CS, SO,

High redshift (z > 0.1)

More hydride lines :

OH, CH, H_2O , NH, NH_2NH_3 , HF, HCl^+ , CH^+ , $o-H_2O^+$, H_3O^+ Other species : C_3 , excited HCO⁺, HCN ... Fine structure lines : CII, OI