Signatures of Molecular Cloud Formation (II)

Clare Dobbs, MPE and Exeter

Jim Pringle (IoA), Andi Burkert (LMU), Ian Bonnell (St Andrews), Daniel Price (Monash), Simon Glover (ITA)

Thursday, October 13, 2011

Key questions

- How do GMCs form?
- What are the properties of GMCs?
- what are their lifetimes? how long do they form stars?
- are they dominated by turbulence, magnetic fields, gravity?
- How are they influenced by stellar feedback?
- Are they formed from atomic or molecular gas?
- Why does such a small fraction of the gas form stars?

Formation of GMCs by Cloud-Cloud Coalescence + Self gravity

Without self gravity:

With self gravity:

Gas organised into increasingly massive clumps Gas artificially prevented from collapse (by pressure) or simulation stopped when collpase occurs

Higher surface density:

Dobbs et al. 2006 Dobbs 2008

Tasker & Tan 2009, Tasker 2011 No spiral potential or stellar arms

No large scale structure, very flocculent

Cloud formation primarily by gravitational instabilities, also cloud-cloud collisions

merical work on galaxy scales

Shetty & Ostriker 2006 Spiral potential, but isothermal, only 10⁴K gas Cloud formation solely by gravitational instabilities

Wada et al. 2011 Stars and gas produces multi-armed spiral

But have neglected stellar feedback...

Would feedback disrupt smaller clouds before GMCs can form?

Also some problems in the absence of feedback: - scale height of disc too low (Douglas et al. 2010) - velocity dispersion only high in spiral arms - clouds have long (>50 Myr) lifetimes

Details of simulations

- Use Smoothed Particle Hydrodynamics (SPH)
- Particles model gas
- Halo + stellar disc included as external potential
 - $\psi = 1/2V_0^2 \log (R^2 + R_c^2)$
- with 4 armed spiral component (Cox & Gomez 2002)
 - of form $\psi_{sp}(r,\theta,z,t) = A \cos(n \log(r/r_o) (\theta \Omega_{sp})t)$ tan i

where n=4, i=pitch angle, Ω_{sp} =pattern speed of galaxy

Details of simulations

- Thermodynamics of the ISM (Glover & Maclow 2007; Dobbs, Glover, Clark & Klessen 2008)
- H₂ formation (Bergin et al. 2004; Dobbs, Bonnell & Pringle 2006)
- Self gravity (Dobbs 2008)
- ~1000-5000 M_{\odot} , 10-20 pc resolution

Adding stellar feedback

Stellar (supernovae) feedback: above densities of 100, 1000, 10⁴ cm⁻³ region must be gravitationally boumd, converging flow, div(v) < 0Add kinetic and thermal energy in form of Sedov solution, equal to $\epsilon M(H_2) \times 10^{51} ergs$ $\epsilon = 0.01, 0.05, 0.1, 0.2, 0.4$ 160 M_☉

 $\Sigma = 8, 16, 40 \text{ M}_{\odot}\text{pc}^{-2}$

Dobbs, Burkert & Pringle 2011

Four Calculations All $\Sigma = 8 M_{\odot} pc^{-2}$

Model	Spiral potential?	£ (%)	
	Y		
2	Y	5	S
3	Y	20	
4	Ν	5	

What are the properties of the ISM and GMCs in these different regimes?

Dominant physics

Self gravity

piral shocks

Stellar feedback

Self gravity

OUTLINE

Global properties of the disc Properties of GMCs Evolution of GMCs: what gas do GMCs form from, how do they disperse?

Structure of the disc: different levels of feedback

Feedback insufficient to disrupt clouds: no equilibrium state Clear spiral arms and spurs

Equilibrium: 150-350 Myr

Feedback dominates structure

Hubble M51 composite image Equilibrium: 150-350 Myr

Structure of the disc: spiral vs no spiral potential

No imposed spiral: structure only on small scales very flocculent, unlike most observed galaxies Similar to Tasker & Tan 2009, Wada & Norman 1999, 2001,2002

Thursday, October 13, 2011

Thursday, October 13, 2011

ε=5 % Σ=8 M⊙pc⁻²

Properties of the ISM: phases

With no, or 1 % feedback, 60-70 % of gas is cold For 5%, one third of the gas lies in cold, unstable, warm phases With 20 % efficiency feedback, too little gas is cold

Thursday, October 13, 2011

Velocity dispersion

Thursday, October 13, 2011

٤ (%)	σ (km/s)
	I-7
5	4-8
20	8-20

With little or no feedback, σ is too low
σ fits best for ε=5%
σ primarily driven by feedback, also spiral shocks

Scale height

Comparison of HI scale height from models with THINGS survey of galaxies (Bagetakos et al. 2011)

again scale height scales with feedback

Scale height - synthetic HI maps

R_{LSR}=8 kpc |=90-|80°

Feedback required to reproduce scale height similar to CGPS (Acreman et al. 2011, submitted) + HISA distribution

Conclusions - global properties

Velocity dispersion and scale height only matched when feedback is included

Best fit for all properties (structure, thermal, distribution, σ , scale height) when there is a moderate (5 %) level of feedback

Properties of GMCs

Cloud mass spectra
Virial parameters
Cloud rotations
Aspect ratio

Thursday, October 13, 2011

Properties of GMCs: Mass function

Spectra roughly match observations with 5% feedback

1% Feedback is insufficient to disrupt clouds - end up with large population of massive clouds

Properties of GMCs: Masses

No spiral potential: no massive clouds

Virial parameters of GMCs

α~<u>5σ²R</u> 3GM

MOST CLOUDS ARE UNBOUND!

+ Heyer × Solomon Х 10⁵ 10⁶

Mass (M_{\odot})

Virial parameters of GMCs

Cloud rotation

For 5% feedback, 40% of clouds exhibit retrograde rotation

Cloud rotation

For 5% feedback, 40% of clouds exhibit retrograde rotation

fewer clouds retrograde for case without spiral potential

only few % retrograde for 1% efficiency calculation

Aspect ratios of molecular clouds

Gravitationally dominated: clouds are predominantly spheres

Dynamically driven: more clouds are elongated

Again, 5% case fits well, 1% is wrong

Thursday, October 13, 2011

Milky Way clouds (Koda et al. 2006)

Conclusions - GMC properties

- Properties of GMCs all disagree with observations when there is minimal feedback (and GMCs are strongly dominated by self gravity)
- Some feedback necessary to disperse the clouds and prevent them becoming too strongly bound
- Imposed spiral structure produces more massive clouds
- Cloud collisions increase the fraction of retrograderotating clouds

GMC formation - what gas forms GMCs?

Cloud-coalescence: clouds formed from mixture of low and high density gas
Gravitational instabilities/ supernovae : a transition from atomic to molecular gas

Thursday, October 13, 2011

What about converging flows?

ε=5%

red=converge in 4 Myr violet=diverge in 4 Myr

ε=20% green=diverge in I Myr

red=converge in I Myr

Individual clouds (5% case)

Dobbs, Burkert & Pringle 2011

Individual clouds

cloud disrupted by feedback on timescales of 10-20 Myr

clouds stay unbound/ marginally bound

Conclusions / Future Work

GMCs likely formed by a combination of cloud coalescence, and self gravity

- With 5% efficiency feedback we can reproduce reasonably well:
- the properties of the ISM
- large scale structure
- properties of GMCs
- Minimal feedback: properties of GMCs do not match observations
- Future simulations:

- use higher resolution, test delay - consistently model spiral structure - use radiative transfer models to obtain CO emission, and to use same techniques as observers to consistently compare GMC properties

