

Characterization of cloud structure: From *Herschel* to CCAT Philippe André **CEA** Laboratoire AIM Paris-Saclay lrfu SPIRE R saclay PACS PACS Optical Componen

GeGa Detecto

Outline:

• Results from the *Herschel* Gould Belt survey on the structure of molecular clouds

- The role of filaments in the core/star formation process
- Speculations: A universal scenario for star formation ?
- Areas where CCAT will contribute

Herschel GB survey IC5146 Arzoumanian et al. 2011 With: A. Menshchikov, V. Könyves, N. Schneider, D.
Arzoumanian, S. Bontemps, F. Motte, P.Didelon, N.
Peretto, D. Ward-Thompson, J. Kirk, M. Hennemann, J.
Di Francesco, P. Martin, S. Molinari, P. Palmeirim,
J.Ph. Bernard & the *Herschel* Gould Belt KP Consortium

Ph. André – CCAT Meeting – Cologne – 06/10/2011

http://gouldbelt-herschel.cea.fr/

Aquila Rift - Herschel Gould Belt survey
André et al. 2010, Bontemps et al. 2010,
Könyves et al. 2010Polaris Flare - Gould Belt survey
Men'shchikov et al. 2010, Miville-Deschênes ea. 2010,
Ward-Thompson et al. 2010Könyves et al. 2010
Ph. André - 06/10/2011Ward-Thompson et al. 2010

20 pc Evidence of the importance of filaments in, e.g., Taurus prior to *Herschel*: cf. Schneider & Elmegreen 1979, Abergel et al. 1994, Hartmann 2002, Goldsmith et al. 2008, Myers 2009

Herschel Gould Belt survey SPIRE 500μm

J. Kirk et al., in prep. P. Palmeirim et al., in prep. deg

5

Characterizing the structure of filaments with Herschel

Filaments have a characteristic width ~ 0.1 pc

2

3

dispersion along

-2

-1

0 Radius [pc]

5.0×10²¹

-3

D. Arzoumanian et al. 2011, A&A, 529, L6

Statistical distribution of widths for 150 filaments

Using the 'skeleton' or DisPerSE algorithm (Sousbie 2011) to trace the crest of each filament

Ph. André – CCAT Meeting – Cologne – 06/10/2011

Core extraction using "getsources" (A. Men'shchikov et al. 2010, 2011)

• Core = single star-forming entity

(Need to resolve ~ 0.01 -0.1 pc)

• Prestellar = bound & starless

Examples of starless cores in Aquila Herschel N_H, map (cm⁻²)

541 starless cores (no PACS 70 μm), including 341 prestellar cores

+

201 YSOs (with PACS $70 \mu m$)

identified with getsources in Aquila

Ph. André – CCAT Meeting – Cologne – 06/10/2011

Strong evidence of a column density "threshold" for the formation of prestellar cores

Distribution of background column densities

Interpretation of the star formation threshold

 \wedge : Prestellar cores Aquila curvelet N_{H2} map (cm⁻²) 1021 Instable M_{line}/M_{line,crit} \mathbf{pc} 3 0.1 θ Unbound

André et al. 2010, A&A Vol. 518

 \succ The gravitational instability of filaments is controlled by the mass per unit length M_{line} (cf. Ostriker 1964, Inutsuka & Miyama 1997): • unstable if M_{line} > M_{line}, crit • unbound if M_{line} < M_{line, crit} • $M_{\text{line, crit}} = 2 c_s^2/G \sim 15 M_{\odot}/pc$ for T ~ 10K $\Leftrightarrow \Sigma$ threshold $\sim 150 \mathrm{M}_{\odot}/\mathrm{pc}^2$ > Simple estimate: $M_{line} \propto N_{H2} \times Width (\sim 0.1 \text{ pc})$ **Unstable filaments highlighted** in white in the N_{H2} map

Importance of the star formation threshold on (extra)galactic scales

Star formation rate vs. Gas surface density

 $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}$ for $\Sigma_{\rm gas} > \Sigma_{\rm threshold}$

Heiderman et al. 2010 Lada et al. 2010 See Gao & Solomon 2004 for external galaxies

Confirming the link between the prestellar CMF & the IMF

André et al. 2010 Könyves et al. 2010 A&A vol. 518

341-541 prestellar cores in Aquila

Factor ~ 2-9 better statistics than earlier CMF studies

Cool (~ one-to-one) mapping between core mass and stellar system mass: $M_* = \varepsilon M_{core}$ with $\varepsilon \sim 0.2$ -0.4 in Aquila

 \succ CMF peaks at ~ 0.6 M_o \approx Jeans mass in marginally critical filaments

Are interstellar filaments formed by large-scale turbulent compression ? Filament width ~ 0.1 pc ~ sonic scale of ISM turbulence

Corresponds to the typical thickness λ of shock-compressed structures/filaments in the turbulent fragmentation scenario Simulations of turbulent fragmentation

Padoan, Juvela et al. 2001

 $\lambda \sim L/\mathcal{M}(L)^2 \sim 0.1 \text{ pc}$ compression ratio (HD shock)

Evidence of the formation of filamentary structures by large-scale compression in the Pipe Nebula

Toward a universal scenario for star formation ?

- *→ Herschel* results suggest core formation occurs in 2 main steps:

 Filaments form first in the cold ISM, probably as a result of the dissipation of MHD turbulence (cf. Padoan et al. 2001);
 The densest filaments then fragment into prestellar cores via gravitational instability (cf. Inutsuka & Miyama 1997) above a critical threshold Σ_{th} ~ 150 M_☉ pc⁻² ⇔ A_V ~ 8
- Filament fragmentation appears to produce the prestellar CMF and likely accounts for the « base » of the IMF

This scenario may possibly also account for the global rate of star formation on galactic scales

Many remaining open issues: Areas where CCAT will contribute

• Does the scenario emerging from *Herschel* observations of nearby (low-mass SF) regions also hold in high-mass SF regions ?

> CCAT can resolve individual prestellar cores up to ~ 3 kpc

• Signatures of the low-velocity interstellar shocks responsible for the <u>formation of filaments</u> in the turbulent picture ?

Good diagnostic with CCAT: [CI] (492 GHz) / CO ratio

- Evolution of filaments:
 - Do subcritical filaments disperse without gaining mass ?
 - Do supercritical filaments accrete mass while collapsing ?

> Extensive high-resolution line mapping and comparison with numerical simulations + radiative transfer

Massive star formation also occurs along filaments

The Vela C centre ridge is an extreme version of the supercritical filaments seen in the Gould Belt survey (~ Serp-South in Aquila)

Crucial need for high-resolution ground-based imaging when studying massive star formation

Example: RCW36 in Vela-C (d ~ 700 pc)

Herschel (500 μm res.: ~ 36") Column density map (H₂/cm²)

Herschel + P-ArTéMiS (450 μ m res.: ~ 10'') Column density map (H₂/cm²)

Minier et al., in prep. Ph. André – 06/10/2011 APEX/P-ArTéMiS obs. (see André et al. 2008)

Signatures of filament formation by turbulence dissipation (e.g. low-velocity shocks)?

In Polaris, one of the most tenuous filaments detected by SPIRE coincides with a CO(2-1) structure of intense velocity shear
 (~ 40 km/s/pc) found at IRAM 30m (Hily-Blant & Falgarone 2009)

A diagnostic of filament formation behind lowvelocity interstellar shocks: the [CI]/CO ratio

Need to detect (and map) weak [CI] (492 GHz) emission ~ 0.1 K km/s

> Need high spatial resolution to resolve filamentary structure

Conclusions:

Example areas where CCAT will contribute

• Does the scenario emerging from *Herschel* observations of nearby (low-mass SF) regions also hold in high-mass SF regions ?

> CCAT can resolve individual prestellar cores up to ~ 3 kpc

• Signatures of the low-velocity interstellar shocks responsible for the formation of filaments in the turbulent picture ?

➢ Good diagnostic with CCAT: [CI] (492 GHz) / CO ratio

• Direct spectroscopic evidence that massive supercritical filaments accrete mass while collapsing/contracting ?

> Extensive high-resolution line mapping and comparison with numerical simulations + radiative transfer