High Spatial Resolution, Large Scale Surveys with CCAT

John Carpenter (Caltech)

Herschel

Bolocam

Dust

Extinction maps

Gas W3 in ¹²CO J=3-2 (JCMT)

BU/UMass Galactic Ring Survey

FCRAO Outer Galaxy Survey

AKARI

WISE

Spitzer

Star Formation in Clouds

 Bulk of cloud mass has low column density

What limits the conversion from diffuse to dense gas?

Lada et al. (2011)

Star Formation and Filaments

Taurus Molecular Cloud

Structure of Molecular Clouds

Molinari et al. 2010

Herschel 70 μ m, 160 μ m, and 350 μ m image at longitude = 59°

Filaments are pervasive...

Molinari et al. 2010

Filtered Herschel 250 μ m image at longitude = 59°

... and are where stars form

Miettinen & Harju (2010)

Emerging picture

 Cloud formation is a dynamic process

Glover & MacLow (2007)

Goodman et al. (1998)

Why CCAT? Resolution!

FCRAO 2.6mm

Herschel 250µm

JCMT 850µm

IRAM I.Imm

LMT I.3mm CCAT 350µm

3.5″

Why CCAT? Resolution! CO in LkCa 15

3.5" = 490 AU @ 140 pc!

Trace gas from diffuse → filaments → cores → disks
Probe the transition regions with CCAT

Not quite so simple...

Di Francesco et al. (2006) Nitrogen and deuterated species trace cold, dense gas

"Starless Cores"

Tafalla et al. (2004)

Not quite so simple...

Di Francesco et al. (2006) Nitrogen and deuterated species trace cold, dense gas

Dark Molecular Gas

Orion

- [CI] lines at 492 at 809 GHz
- Trace both cloud interior and transition between diffuse/ dense gas
- What are the variations in the kinematics/turbulence across this boundary?

Filaments

Goldsmith et al. (2008)

• Gas infall onto filaments?

• Merger of filaments to form massive cores?

Flow of gas along filaments?

 (Shocked?) dissipation of turbulence?

Self-similar structure

Falgarone et al. (1991)

"Coherent Cores"

linewidth

Pineda et al. (2010)

• Can we resolve the dissipation region?

 Can we detect the shocked zones (see Andy Pon's talk)?

> B5 dense core @ 250 pc 31" resolution

Summary: Which band is "best"?

[CI] 492 GHz

[CI] 809 GHz

Dual frequency "ideal" to provide resolution and excitation in Carbon and CO