Molecular Tracers

of Turbulent Shocks

in Molecular Clouds
Andy Pon,
ApJ, submitted May 2011
Doug Johnstone,
Michael J. Kaufman

Ridge et al. (2006)

Shock Model Setup

* Magnetohydrodynamic (MHD) C-shock code from Kaufman \& Neufeld (1996)
* Density of either $10^{2.5}, 10^{3}$ or $10^{3.5} \mathrm{~cm}^{-3}$
* Shock velocities of 2 or $3 \mathrm{~km} / \mathrm{s}$
* Initial magnetic field strengths, perpendicular to the shock direction, of $B=b n(H)^{0.5} \mu \mathrm{G}$, where $\mathrm{b}=0.1$ or 0.3 . This gives B from $3 \mu \mathrm{G}$ to $24 \mu \mathrm{G}$.
* Mach numbers from 10 to 20 and Alfvénic Mach numbers ranging from 5 to 15

Energy Dissipation Mechanisms

Magnetic
Field (16\%)
H_{2} Rotational Transitions (14\%)

CO
Rotational
Transitions
(68\%)

- B Field

H2

- Other

Molecular Cloud Dissipation Rate

The turbulent energy density is:

$$
E=3 / 2 \rho v^{2}
$$

If the dissipation timescale is roughly the crossing time:

$$
\Delta E / \dagger_{c}=3 / 2 \rho v^{2} * v /(2 R)
$$

There is an empirical relationship between the velocity dispersion and the radius of a molecular cloud.

For a spherical cloud:

$$
\mathrm{L}_{\text {turb }}=5.12 \times 10^{32}\left(\frac{\mathrm{n}}{1000 \mathrm{~cm}^{-3}}\right)\left(\frac{\mathrm{v}}{\mathrm{~km} \mathrm{~s}^{-1}}\right)^{7} \mathrm{ergs} \mathrm{~s}^{-1}
$$

Predicted Shock Line Strengths

Photodissociation Region (PDR) Model

* PDR model from Kaufman et al. (1999)
* Density of $1000 \mathrm{~cm}^{-3}$
* Interstellar radiation field of 3 Habing
* Microturbulent Doppler line width of $1.5 \mathrm{~km} / \mathrm{s}$
* Extends to an A_{V} of approximately 10

Predicted Line Strengths

Predicted Line Strengths

ATM 2002 Model (Pardo et al.)

$n=10^{2.5} \mathrm{~cm}^{-3}$
$v=3 \mathrm{~km} \mathrm{~s}$
$\mathrm{~b}=0.3$

Summary

 (see ApJ, submitted May 2011 for more detail)* Magnetic field compression removes a significant (15-45\%) fraction of a shock's energy
* H_{2} rotational lines trace shocks with Alfvénic Mach numbers > 15
* CO rotational transitions dissipate the majority of the energy
* Low J lines are dominated by PDR emission
* Mid to high lines trace shock emission!

