Molecular Tracers of Turbulent Shocks in Molecular Clouds

Andy Pon, Doug Johnstone, Michael J. Kaufman ApJ, submitted May 2011

Ridge et al. (2006)

Shock Model Setup

- Magnetohydrodynamic (MHD) C-shock code from Kaufman & Neufeld (1996)
- * Density of either $10^{2.5}$, 10^3 or $10^{3.5}$ cm⁻³
- * Shock velocities of 2 or 3 km / s
- * Initial magnetic field strengths, perpendicular to the shock direction, of B = b n(H)^{0.5} μ G, where b = 0.1 or 0.3. This gives B from 3 μ G to 24 μ G.
- Mach numbers from 10 to 20 and Alfvénic Mach numbers ranging from 5 to 15

Energy Dissipation Mechanisms

Molecular Cloud Dissipation Rate

The turbulent energy density is:

 $E = 3/2 \rho v^2$

If the dissipation timescale is roughly the crossing time:

 $\Delta E / t_c = 3/2 \rho v^2 * v / (2R)$

There is an empirical relationship between the velocity dispersion and the radius of a molecular cloud.

For a spherical cloud:

$${
m L_{turb}} = 5.12 imes 10^{32} \left(rac{{
m n}}{1000 {
m cm}^{-3}}
ight) \left(rac{{
m v}}{{
m km\,s}^{-1}}
ight)^7 {
m ergs\,s}^{-1}$$

Photodissociation Region (PDR) Model

- * PDR model from Kaufman et al. (1999)
- * Density of 1000 cm⁻³
- * Interstellar radiation field of 3 Habing
- Microturbulent Doppler line width of 1.5 km / s
- * Extends to an A_v of approximately 10

ATM 2002 Model (Pardo et al.)

(see ApJ, submitted May 2011 for more detail)

- Magnetic field compression removes a significant (15-45%) fraction of a shock's energy
- * H₂ rotational lines trace shocks with Alfvénic Mach numbers > 15
- * CO rotational transitions dissipate the majority of the energy
- Low J lines are dominated by PDR emission
- Mid to high lines trace shock emission!