Submillimeter and IR Studies of Molecular Regions in the Magellanic Clouds

Mónica Rubio Universidad de Chile

CCAT Workshop, Koln, 5oct11

Dark Molecular Gas

Stars are formed in dense cold molecular clouds

BUT

in low metallicity systems it is not easy to determine the amount of molecular gas

Fig. 1.—Illustration of a model cloud showing the radius $R_{\rm CO}$ of the CO core, the radius $R_{\rm Ha}$ where $2n_{\rm H_2} = n_{\rm HI}$ (equal mass density in H atoms and H₂ molecules), and $R_{\rm tet}$ the total cloud radius. Within $R < R_{\rm CO}$, gas is mainly CO and H₂. Within the range $R_{\rm CO} < R < R_{\rm Ha}$, gas is mainly H₂ whereas the gas phase carbon is mainly C and C⁺. Within the range $R_{\rm H_2} < R < R_{\rm tot}$ gas is mainly H 1 whereas the gas phase carbon is mainly C⁺. $A_V(R_{\rm Ha})$ is the optical depth measured from the outer radius to $R_{\rm Ha}$ and $A_V(R_{\rm CO})$ is the optical depth

Wolfire, Hollenbach, McKee 2010

Star formation rate depends on the total gas mass (HI+H2) but recent results show that SFR depends mainly on the amount of H2. (Leroy, et al , Bolatto et al, Genzel et al,) Relations for H_2 and total gas

Molecular Gas

Atomic+Molecular Gas

The SMC is "normal" in H₂ vs. SFR

The SMC is vastly underperforming in total gas vs. SFR

Similar problem at high-z, see Wolfe & Chen (2006)

Krumholz et al. (2009, KMT) models with HI→H₂ set by PDR balance fit the data

How can we measure H₂

- CO observations , X=N(H2))/ICO
- Virial mass determination
- Emission from dust

In low metallicty systems , i.e, SMC and LMC it is well known that CO does not trace the total H₂ dark gas. CO is less abundant and the lower gas/dust ratio implies that CO photodissociated (Rubio, et al 93, Maloney and Black 98)

Abundances of several molecules and ions on a plane parallel uniform molecular cloud model ilumnated from one side by a UV field =10 UV gal, Z=0.1Zo (Lequeux et al 94)

Combining the 160 mu, Hi and CO, finds that H2 must be Much extended than CO (Leroy et al 2007, Bolatto et al, Leroy et al 2010

 From Spitzer/MIPS
 data combined with HI ->Σ_{H2}
 But FIR emission

sensitive to T_{dust}

Derived N(H2) is more extended by a of ~ 30%

XCO $\sim 0.0 \text{XIU}^{21} \text{ mol}$ / **Fermison Similar to virial (Mizuno et al. 08)** Twice determination from SEST studies (Rubio et al 93, Bolatto et al .03)

FIG. 1.— (Top) H₂ column density map at ~ 12 pc resolution. This map is obtained from modeling the Spitzer dust continuum observations from S³MC/SAGE-SMC (Bolatto et al. 2007; Gordon et al. 2011) together with the combined ATCA/Parkes 21 cm H I map (Stanimirović et al. 1999). The colorbar inset indicates the values for the color scale, in units of 10^{21} cm⁻². The N_{H2} contours are placed at N_{H2} \approx 1.4, 3.4, 8, and 12×10^{21} cm⁻², equivalent to deprojected molecular surface densities $\Sigma_{mol} \approx 23, 56, 130$, and 200 M_{\odot} pc⁻² when

Submillimeter and FIR studies of the dust emssion provide an alternative way to measure the dark molecular mass

- 1.2 mm SIMBA bolometer @ SEST
- SPITZER 3.6, 4.5, 5.8, 8.0, 24, 70, 160 μm
-0.850 mm LABOCA bolometer @APEX
-Herschel, 160,250, 300, 500 μm

Assuming a universal opacity of dust grains and knowing the gas-to-dust ratio I_{mm}-> N(H₂)

BUT

Mass estimates based on 1.2mm (SIMBAS@SEST) and 0.8mm (LABOCA@APEX) give larger masses than those obtained from virial mass assuming gravitationally bound molecular clouds for SMC molecular regions studied.

- first result for an quiescent cloud in SMC (Rubio et al. 2004)
 SMCB1#1, SIMBA 1.2mm.
- $M_{mm} > 10 M_{vir}$

Laboca/APEX SMC observations 870µm @ SMC- SW region

Bot et al. 2007, 2010

Submillimeter excess

(seen also in dwarf galaxies)

Madden et al, Galametz et al 2011

In the SMC, Plank 500 mu shows an emission excess but it seems that it is not sufficient to explain the difference in mass.

We explore regions in the Magellanic System

LMC, SMC and Magellanic Bridge

Sample low metallicity systems Zlmc = 0.5, Zsmc = 0.1 and Zmb Zsmc Observations 870 µm observations where held at the APEX telescope in Llano Chajnantor, Atacama, Chile, with the LABOCA bolometer on August and October 2010 with a pwv between 0.2 and 0.9 mm, resulting in ~10'x10' dust continuum maps for several regions in the SMC, LMC and Magellanic Brigde. As these are weak and extended sources, the reduction in BoA was done in an iterative process using a signal-to-noise mask.

Celia Verdugo MSc Student DAS, UCHILE

Before

Cinthya Herrera and Viviana Guzman

N83-N84 in the SMC

LABOCA image

Cloud	$\begin{array}{c c} \mathbf{M}_d \\ 10^2 \ \mathbf{M}_{\odot} \end{array}$	$\begin{array}{c} \mathrm{M}_{g} \\ \mathrm{10^{4}} \ \mathrm{M}_{\odot} \end{array}$	$\begin{array}{c} {\rm M}_V \\ 10^4 \ {\rm M}_\odot \end{array}$	$f = \frac{M_g}{M_V}$
1	3.4	19.4	5.4	3.6
2	17.3	98.8	71.1	1.4
3	2.77	15.8	27.1	0.6
4	5.46	31.2	11.1	2.9
5	17.4	10.0	38.2	0.3

LABOCA image with CO(2-1) contours

Guzman et al. In prep

LMC regions Preliminary results

The dust emission was obtained measuring the 870 μ m emission and subtracting the free-free and CO line contributions at this wavelength. Aperture photometry was done to each cloud in the sample at 24, 70, 100, 160, 250, 350, 500 and 870 μ m, to measure the flux density at each wavelength and used to construct the SED for each cloud.

$$n_{d} = \frac{cte \cdot v_{0}^{\beta}}{\Omega \cdot \kappa_{v0}} \qquad x_{d} = \frac{n_{d}}{\mu m_{H} N_{H}}$$
$$M_{d} = \frac{S_{v} D^{2}}{\kappa_{d} B_{v}(T)} \qquad M_{g} = \frac{M_{d}}{x_{d}}$$

160 mu Herschel

A simple modified blackbody law $S_{\lambda} = \text{cte} \cdot (c/\lambda)^{\beta} \cdot B_{\lambda}(T)$ was fitted to the SED's with cte, β (spectral emissivity index) and temperature T as free parameters. As example, results for 4 of the sources in the sample are shown.

Source	Т __ [К]	β	n _d [gr cm²]	X _d	M _d [M _{sun}]	$M_{g}[M_{sun}]$	M _{vir} [M _{sun}]
N113	24	1.94	8.61·10 ⁻⁵	3.78·10 ⁻³	8.69 ·10 ²	2.29·10⁵	<u>10⁵ (4)</u>
N4	24	1.98	7.98 ·10 ⁻⁵	3.5·10 ⁻³	1.19 ·10 ²	3.4·10 ⁴	3·10 ⁴ (5)
N159	26	1.90	5.11·10 ⁻⁵	2.24·10 ⁻³	1.465 ·10 ³	6.54·10 ⁵	1.37·10 ⁵ (6)

Preliminary results: Flux densities obtained from the photometry and temperatures from the fitting procedure are listed in the table. Using a distance to the LMC of 50 kpc, a dust absorption coefficient of $\kappa_{870\mu m} = 1.26 \text{ [cm}^2 \text{ gr}^1\text{]}$ (Bot et al. 2010) and a dust-to-gas ratio of $5 \cdot 10^{-3}$ according to the low metallicity of the LMC (~0.5 Z_{sun}) (Dufour et al 1984) gas masses (M_{mm}) are calculated and compared with virial masses (M_{vir}) from the literature, calculated as M_{vir} = $210 \cdot \Delta V^2$ [km/s]·R[pc] (McLaren et al. 1988). For N113 and N159W M_{mm} is larger than the M_{vir} in a factor ~2, and for N159E this factor is only ~1. For N4 we get M_{vir} > M_{mm}, so except for this source these LMC clouds follow a similar behavior as observed in the SMC (Bot et al. 2010). Future work would confirm this preliminary result.

N11

1p

2a

2c

2d

2h

3a

108 80

360

116

285

53

97

6

27

10

20

9

0.1

2

11

2

5

0.4

11

72

322

103

266

43

11.2

11.8

66.8

12.4

28.7

24.6

82.3

53.7

188

38.2

254

36.6

2.9

86.8

391

125

317

52.7

0.2

1.6

2.1

3.3

1.2

1.4

1.2mm continuum image (SIMBA@SEST

Herrera, et. al. in prep

N11

M_{vir}-M_{mm} comparison for molecular clouds in the Milky Way and in the SMC (Bot+07), and in N11. Though the ISM in the LMC has low metallicity as in the SMC, there is no important difference between the molecular clouds in N11 and in the Galaxy.

For all the clouds in N11: Mco < Mvir

The low value for the luminous mass can be explained by CO photodissociation. In a low metallicity environment, the UV radiation field destroys the CO molecule leaving the H₂, which selfshields, and no CO outside dense gas.

Could Dark molecular gas become "visible"?

- Observations of low Z galaxies is extremely expensive in telescope time and in general these galaxies have not been detected in CO.
- The nearest galaxies after SMC and LMC are ten times further away and we have been able to observe in CO (@10pc resolution) and continuum only a dozen of molecular cloud region in the Magellanic Clouds

The possible detection of CO and 870 mu continumm emission in WLM : a dwarf Galaxy with lower Z than the SMC.

LABOCA 870 mu continumm emission in WLM

Collaboratiors: D. Hunter, E Brinks, B. Elmegreen

 $T_{mb} = 0.05 K + 0.03 K$

 $=> M = 5 + -2 \ 10^6 Mo$

 $T_{mb} = 0.024 K + 0.02K$

 $=> M = 3 + -2 \ 10^6 Mo$

To study the Dark molecular gas in low metallicity systems and thus understand the Star formation in primeval dustless galaxies

ALMA

CCAT PROJECT @ Cerro CHAJNANTOR

Magellanic Bridge – Source A

(d) $160 \mu m$ MIPS

(e) $160 \mu m$ PACS

Collaborators				
Frank Bertoldi, Bonn, Germany	Students			
Alberto Bolatto, Maryland, USA	Laura Perez now at Caltech			
Caroline Bot, Strasbourg, France	Cinthya Herrera now at IAS			
Francois Boulanger, IAS, France	Viviana Guzman now at DEMIRM			
Alessandra Contursi, MPE, Germany	Elisa Carrillo now at			
Jesus Maiz-Apellaniz , IAA, Spain	Bonn			
Norikazu Mizuno, NAOJ	Klaus Rubke now at IAC Celia Verdugo at DAS			
Deidre Hunter, Elias Brinks, Bruce Elmegreen	Fukui & Nanten Group			

Laboca/APEX LMC maps

30 Doradus

Guzman et al. in prep

