Spectroscopic Surveys of CO Emission in the Milky Way

Mark Heyer & Robert Simon

Umass / KOSMA

Formation and Development of Molecular Clouds
5 October 2011, Cologne, Germany

Value of Galactic Plane Surveys

- CO spectroscopic imaging enables views of GMCs across the Galaxy
- **ISM Diversity:** need for large sample sizes
- GMCs are complex objects:

High spatial dynamic range is essential

• Velocity information: best diagnostic for dynamical systems

Complete Survey of CO in MW

Dame, Hartmann & Thaddeus 2001

- Excellent calibration
- Complete survey of the MW molecular disk

Limitations:

- 8.7 arcmin resolution
- 12CO: opacity >>1

FCRAO 14m Telescope (1976-2006)

- 14m antenna 45" at 115 Ghz
- SEQUOIA 32 pixel, focal plane array
- Autocorrelation spectrometers
- On-the-Fly Mapping
- Stable, efficient control systems

FCRAO Galactic Plane Coverage: 1115 deg²

Survey	Coverage	Mol.	Sampling	Sensitivity (T _{MB})	Publication	Data Access
Outer Galaxy Survey	102 < I < 141 -3 < b < 5.5	¹² CO	50.2" 0.82 km/s	0.93	Heyer etal 1998	Yes
BU-FCRAO Galactic Ring Survey	18.5 < I < 55.5 b < 1	¹³ CO	22.2" 0.13 km/s	0.21	Jackson etal 2006	Yes
Anti-Center Survey	175 < I < 192 -3.5 < b < 5.5	¹² CO ¹³ CO	22.5" 0.13 km/s	2.02 0.88	Brunt etal 2012	June 2012
Extended Outer Galaxy Survey	141 < I < 175 -3.5 < b < 5.5	¹² CO ¹³ CO	22.5" 0.13 km/s	2.00 0.83	Brunt etal 2012	June 2012
Vulpecula Survey	55.7 < I < 65 b < 1.0	¹² CO ¹³ CO C ¹⁸ O	22.5" 0.13 km/s	1.87 0.46 0.44	Brunt etal 2012	June 2012
Cygnus Survey	65 < I < 102.5 -1.0 < b < 1.5	¹² CO ¹³ CO	22.5" 0.13 km/s	2.11 0.83	Brunt etal 2012	June 2012
Cepheus Flare Survey	101 < I < 116 5.5 < b < 17	¹² CO ¹³ CO	22.5" 0.13 km/s	0.9 0.4	Brunt & Heyer 2012	January 2013

FCRAO Outer Galaxy Survey

(QUARRY 15 element Schottky array)

Primary Results

- Confinement of CO to spiral arm features to much more sensitive limits (Heyer & Terebey 1998)
- Equilibrium State of GMCs (Heyer etal 2001)
- Universality of Turbulence (Brunt 2003; Heyer & Brunt 2004)
- HI Self-Absorption-CO Connection (Gibson et al 2000)

BU-FCRAO Galactic Ring Survey

- Established HI self-absorption to discriminate near-far ambiguity
- Equilibrium of inner Galaxy GMCs (Simon et al 2001)
- Infrared Dark Cloud Distribution (Simon et al 2006; Jackson et al 2008)
- GMCs Properties with HII regions (Andersson et al 2009)
- Reduced surface density of GMCs with respect to SRBY (Heyer et al 2009)
- Dependence of turbulent velocity amplitude on surface density (Heyer et al 2009)

FCRAO Extended Outer Galaxy Survey

Cygnus: 74 < Longitude < 86

Limitations of Milky Way CO Surveys

- Rely on rotation curve to place GMC in disk
- Confusion near tangent point
- Non-circular motions (5 30 km/s) in spiral potentials
- Challenging to relate observations to large-scale processes that introduce non-circular motions
- CO likely misses a significant fraction of H₂ mass
- CCAT role?

Constraining the Physics of GMC Formation

Theory

- Formation rate of H₂ is slow (~10⁹/n_H yr)
- Top-down processes from diffuse ISM
 - Instabilities: Jeans', Parker, magneto-rotational
 - GMC formation in expanding shells
 - Turbulent, converging HI flows
- Bottom-up process
 - Coagulation of smaller pre-existing molecular clouds
- What is the role of spiral density waves? Catalyst for both?
- Link GMCs to larger structures (spiral arms, shells, HI streams) → nearby galaxies

Constraining the Physics of GMC Formation

- Imaging of so called "Dark H₂" gas is key to understanding GMC formation: (0.1 < Av < 3 mag)
- Planck/FERMI results: extended reservoir of H₂ gas not traced by CO. Distribution?
- CCAT can image a fraction of this component with the 492 GHz CI fine structure line
- Advantage over ALMA: Low surface brightness sensitivity, large scale imaging

Probing the Atomic-Molecular Transition with CCAT

CCAT imaging of 492 GHz CI line

What phase is the gas entering spiral potential?

Image the spiral structure of CI emission in nearby galaxies

Are CO GMCs located at the interface of converging gas streams?

 Image CI emission that circumscribes a GMC. Analyze velocity field for large scale, converging motions centered on GMC

Constraining the Physics of Star Formation

Theory: linking cloud dynamics to star forming cores

- Probe kinematics of dense gas in GMCs
 - Angular momentum structure
 - Role of magnetic fields, polarimetry
- Turbulent Fragmentation:
 - Measures of turbulent velocity spectrum: sonic scale

• Still need lower excitation line emission to challenge current theories of star formation that focus on the role of turbulence in the low density gas to produce star forming cores/filaments

Conclusions

- Focal plane array development essential
 - Frequencies?
 - CO 3-2 not as useful as 1-0/2-1 for GMC formation studies
 - CI potentially more useful; it may be difficult to distinguish dark H₂ gas in envelope from residual CI deeper inside
- Galactic plane surveys not worthwhile for CCAT
 - Rather focus on nearby galaxy imaging to address GMC formation complementary to ALMA