

Cornell University California Institute of Technology & NASA JPL University of Cologne University of Bonn Canadian university consortium **British Columbia** Calgary Dalhousie McGill **McMaster** Toronto Waterloo Western Ontario University of Colorado Associated Universities, Inc.

Director – Riccardo Giovanelli Project Manager – Jeff Zivick Project Engineer – Steve Padin Project Scientist – Jason Glenn

> Jason Glenn, University of Colorado, Boulder Formation and Development of Molecular Clouds Cologne University, 5 Oct 2011

Telescope

Basics

- Aperture: 25 m
- Angular Resolution: 3.5" beams
 @ 350 μm
- Wavelengths: 350 μm 2.2 mm
 (200 μm goal)
- FOV: $\geq 20'$ (1°)
- Surface: HWFE < 12.5 μ m rms
- Cost: ~\$110M U.S. (85€ million)

Construction

- Enclosed
- Alt/Az mount with Nasmyth foci
- Active surface with AI tiles and CFRP subframes
- CFRP truss
- Steel elevation structure

Atmospheric Transmission Cerro Chajnantor (5,600 m)³

Timeline

- 2004 MOU signed between Cornell and Caltech
- 2006 CCAT Feasibility/Concept Study completed
- 2007 Interim Consortium Agreement signed by, including Cornell, Caltech, UK ATC, Colorado
- 2010 U.S. Astro2010 Decadal Survey endorsement:

Recommendations for New Ground-Based Activities—Medium Project

Only one medium project is called out, because it is ranked most highly. Other projects in this category should be submitted to the Mid-Scale Innovations Program for competitive review.

- 2011 CCAT partnership, corporation, and board of directors formed; Engineering Design Phase initiated
- 2013 Scheduled completion of EDP
- 2013 2017 Scheduled construction phase

First-Light Instrumentation

A call for proposals will be circulated to CCAT partners shortly for design studies for first-light instruments, with first-light instrument selection preceding the end of the EDP.

Instruments that have been discussed include

- SWCam: TES or FIR-KID arrays
 - (200), 350, 450, (620) µm bands
 - Possibly 50,000 0.5f λ pixels
- LWCam: MKID array
 - (750), 850, 1100, 1300, 2100 μm bands
 - Possibly 3k 4-color $(1-2)f\lambda$ pixels
- Broadband, medium resolution multiobject spectrometer using ZEUS or Z-Spec technology
- Heterodyne spectrometer arrays

Galaxies & the Cosmic Far-Infrared Background at Submillimeter

Wavelengths

- 1. Submm observations are necessary to measure the bolometric luminosities of starforming galaxies
- 2. Only the most luminous galaxies have been detected so far
 - 10% of CFIRB resolved directly with *Hersche*l
 - 50% resolved by P(D)
 - ⇒ Parameterized number count models derived to a depth of 2 mJy/beam

HerMES Lockman Hole North Oliver et al. (2010, 2011)

Simulated maps of the same patch of sky based on *Herschel* counts

µm

Measuring the ULIRG Luminosity Function to $z \ge 5$

Courtesy R. Chary, based on Chary & Elbaz

- At $5\sigma_{conf}$ CCAT will detect ULIRGs to $z \approx 6.3$, 5.5, and 0.7, respectively, at $\lambda = 350$, 450, and 850 µm
- The deepest CCAT surveys will match Spitzer 24 µm for z < 2 and surpass for z > 2
- Halo masses can be measured via clustering of galaxies almost two orders of magnitude fainter than *Herschel* [$S_{250\mu m} > 30 \text{ mJy}$ reside in dark matter halos with $M > (5\pm 4) \times 10^{12} M_{sun}$]

8

High-z galaxies will have low 350 to 850 μ m flux density ratios ("350 μ m dropouts") and may enable us to probe the epoch of reionization

 $>5\sigma$ 850 µm detection, 350 µm nondetections

Spectroscopy: Redshifts and ISM Astro-physics

- Thousands of galaxies will be detectable per sq. deg. spectroscopically
- Broadband MOS capability required
- Atomic fine-structure lines, line-continuum ratios, and CO ladder will measure
 - Redshifts
 - Gas mass reservoirs
 - Gas cooling rate
 - Gas excitation mechanisms

10

The SZ Effect: Resolving Cluster Astrophysics

11

- CCAT will resolve clusters better than 10 m class telescopes while not resolving out diffuse signal
- Broad submm-to-mm spectral coverage and good angular resolution will enable separation of thermal SZ, kinetic SZ, dusty galaxies, and CMB
- N(M, z) help constrain cosmological parameters, such as w₀
- Comparison to simulations will improve scaling relations for mass estimates

Questions to Consider

- What spectral lines are most important for mapping?
- What priority should be assigned to the bands?

Continuum sensitivities from Table 4.3 of the CCAT Feasibility/Concept Design Study (2006)

λ (μm)	PWV (mm)	NEFD (mJy s ^{1/2})
200	0.3	150
350	0.4	14
450	0.5	14
620	0.5	16
740	0.7	8.7
865	1.0	5.8
1.18	1.0	1.7
1.4	1.5	2.9
2.0	1.5	2.3

Jason Glenn, Unveiling the Far-IR and Sub-mm Extragalactic Universe

Measuring Redshifts and Characterizing Interstellar Media

Atomic fine-structure and molecular lines enable z to be measured and T, n, M_{gas}, and G to be measured and source of excitation to be identified

- G: 400- 5,000
- n: 10³ − 10⁴ cm⁻³
- Starburst-dominated to AGN-dominated L_[CII]/L_{FIR} ~ 8

Elux Density (10⁻¹⁸ W m² bin) Final density (10⁻¹⁸ W m² b

v (km/sec)

4 - SMM J123634

z = 1.2224

ZEUS CSO Stacey and Hailey-Dunsheath, et al.