

Integrated Optics for Submillimeter Spectroscopy: Introducing µ-Spec

Harvey Moseley

Dominic Benford, Matt Bradford, Ari Brown, Kevin Denis, Negar Ehsan, Wei-Chung Haung, Wen-Ting Hsieh, Thomas Stevenson, Kongpop U-yen, Edward J. Wollack, and Jonas Zmuidzinas

Goddard Microwave Design Capabilities

Microwave Kinetic Inductance Detector with Selective Polarization Coupling

Broadband TES Termination

10 mm

Thermal Blocking Filter

The Space Environment

µ-Spec– Harvey Moseley

Grating Operation

Grating divides amplitude into n equal parts with progressively increasing phase shift

Different Frequencies propagate as plane waves with different k-vectors

- Resolving power is set by total phase delay, which is of the order of the size of the instrument. Must be large for high resolution.
- Focal surface must have of order N detectors for full sampling of an octave at resolving power N. Since detectors must be of order λ in size, the transverse dimension must be large, similar to the length
- So: Spectrograph must be of order N λ x N λ

Single Photon Detectors – Harvey Moseley

µ-Spec Allows Dramatic Reduction in Spectrograph Size

Superconductors with single crystal Si dielectric

Bulk loss of Si is low enough

µ-Spec Concept

Output Filter Bank

- Each output of the spectrometer receives signals at different wavelengths from different orders of the grating
- Each output has a channelizing filter bank which directs the different orders to their detectors.

Context

MicroSpec (μ -Spec), the instrument being proposed, is orders of magnitude smaller than present instruments of comparable performance.

Adapted from a Matt Bradford slide.

Microwave Technology Implementations

- Ultra-broadband antenna
- Front-back microstrip transition
- Channelizing filter
- Plane-wave absorber
- Low Noise Equivalent Power (NEP) Microwave Kinetic Inductance Detector (MKID)

Ultra-broadband Slot Antenna

Broadband Slot Antenna Simulation

Slotline Antenna Gain Response at 650 GHz

Channelizing Filter

Interesting spectrophotometer by itself!

Plane wave absorber

Unit cell model of the absorber on 0.45 um singlecrystal Silicon substrate

Fabrication Stack up

Two-line Interferometer Concept

Fabricated Two-line Interference Device

Hardware Implementation

Two-line Interferometer Package

Two-line Interferometer Test Setup

 $\tau = 200 \ \mu s$, NEP $\sqrt{\tau} = 0.035 \ eV \ (35 \ \mu m)$

Single Photon Detectors – Harvey Moseley

Low NEP Detector Development

Low Volume Detector Design

- CPW provide broadband termination for Ti-N sheet resistor
- Compact design with short resistor termination
- Cut-out slot prevent current from flowing around the resistor termination at RF frequencies
- Matching capacitor enhances the isolation level between the CPW input and the Resonator

Detector Termination Frequency Response

Frequency response of the detector termination

Simulated current density (A/m) of the ground plane with high kinetic inductance around the at 4 GHz

Detector Packaging

Top view of the Low NEPDetector Chip

Broadband Antenna

Physical layout of the Microstrip-feed Slotline Antenna Slot antenna setup with hyperhemisphere lens : Si sphere radius = 1 mm, Radiation sphere radius = 1.2mm

Antenna Radiation Pattern and Frequency Responses

Antenna Return loss Response

Antenna gain at 650 GHz

Antenna Radiation Pattern

Antenna gain at 350 GHz - 3dB Beam width ~ 19 degree Antenna gain at 500 GHz

Slot Antenna 3D Radiation Pattern

3D Radiation Pattern of the Low-NEP Slot antenna at 300, 500 and 650 GHz

Low NEP Detector Optical Interface Area

3D View of the detector package

Detector Assembly without cover Detector Assembly with cover

Substrate Characterization

- TiN Resonator
- MoN Resonator

CPW resonator under investigation

TiN Measurement Results

Measured and circuit model frequency response of the CPW resonator: Extracted Coupling Q = 394,553Extracted Internal Q = 126,954

MoN Resonator Frequency Response at 0.4 K

Frequency response of the MoN CPW resonators test structure containing 16 resonators Q_c ranges from 10⁴ to 10⁸.

Shift in resonator frequency due to input power level (-50 to -100 dBm)

2.7759 2.77595 2.776 2.77605 2.7761 2.77615 2.7762 2.77625 2.7763 Frequency (GHz)

- Is the first fully integrated high performance spectrometer system
- Can couple to large two dimensional arrays of detectors in a very small volume
- Can operate up to 700-1200 GHz
 - Set by available superconductors
- Can provide R ~500 by fabrication tolerances,
 > 1500 by delay line trimming
- Can be mass produced
- Optics can be highly corrected to provide diffraction limited imaging of the spectrum

Status

- All basic elements have been produced
 - Nb transmission lines with single crystal Si dielectric show low loss
 - Q_{dielectric} > 1000 at 35 GHz
 - Tolerances are acceptable
 - R~500 possible by tolerance alone
 - No other complicated circuit elements
 - Relatively simple fabrication process
 - Needs only 3 metal layers

- Compact
- Provide highly protected environment for photon counting detectors
 - Single mode in, power divided
 - Microstrip has low loss
 - Highly filtered interfaces
 - Can be almost completely boxed at operating temperature.

Single Photon Detectors – Harvey Moseley

Summary

Integrated optics provide ideal environment for low-NEP photon counting detectors in the THz region

Provide practical technique for using large arrays of detectors for THz spectrometers

Enables very compact instruments; > 100 spectrometers, > 10⁵ pixels

Instrument mass/volume/power dominated by electronics