Submm / mm Survey Spectroscopy

Intro & source densities for spectroscopy

Z-Spec: Some Results

-> sensitivities, instrument approach, and a first light MOS.

Matt Bradford (JPL / Caltech) CCAT Workshop Cornell November 13, 2010

Spitzer GOODS - 24 µm; Daddi et al.

Detecting all the light at 24 microns with Spitzer MIPS

850 micron N(S) is to first order a luminosity function

Models from A. Benson et al. (Galform group)

modified IMF and star formation timescale included to reproduce 850 micron counts

CCAT View of the Universe 13 Nov 2010

Models provide approach to CCAT population z distribution: Apply to C+

350 & 450 microns window are likely to access 31% of the 850 micron population in C+

High-z sources can be probed in the long submm and mm windows.

Redshift Distribution from GALFORM model -- similar to Chapman

Ultra-compact approach: WaFIRS spectrometer

True broadband spectroscopy in the submillimeter: Z-Spec, a 1st order grating covering 190-305 GHz.

APM 08279+5255, z=3.91

~16 hours, 0.7-1 Jy sqrt(sec)

APM 08279+5255, z=3.91 ~16 hours, 0.7-1 Jy sqrt(sec)

CCAT IFPI will be much larger than SPIFI due to the huge throughput

Cryogenic Scanning Etalons

SPIFI HOFPI -> Oberst dissertation (Cornell)

CCAT View of the Universe 13 Nov 2010

C+ Detection Rate: Comparison Between F-P & Grating

Could a Fabry-Perot serve to select sources at specific redshift from a field ? Yes, but in the short submillimeter, the source densities are low enough that detection rate in the field will be low. Broadband grating is faster if you can couple even a couple sources.

Fabry-Perot at 350

Source detection rate =

$dN / dz \propto \Omega$

dN / dz = 36 - 62 per square deg, per res el. $\Omega = 1.7e-2$ sq deg (200x200 array)

Rate = 0.6-0.7

Same number of spatial modes gives a higher rate in the 850 / 1 mm bands, could be interesting for highest-z C+

Most optimistic R=1000 FP at 350 microns: 200 x 200 = 4e4 beams or 1.7e-2 sq deg Take 10 resolution element scan: Gives $1.7e-2 \times 36 \times 10 = 6 \text{ LIRG} + \text{ sources}$ In 10 hours observation. Doesn't look good, not

Grating

Source detection rate =

z_fraction x N_mos

z_fraction = 0.3 (including 350 & 450) N_mos = ? (10-100)

Rate = 0.3 x 10-100 = 3-30

<u>FTS</u>

BG noise penalty compensated by instantanous bandwidth
BUT spectrum is encoded with time need stability over the interferogram – how to do this with the mapping?

Also lose half the light in the interferogram + encoding loss -> sqrt(8) penalty

enough volume due to finite z

CCAT View of the Universe 13 Nov 2010

A first-light 3-band multi-object CCAT spectrograph

 3 Bands per beam, each a WaFIRS module with matched horns & detectors. All couple instantaneously to a single point source -> use polarizer and dichroic filters. Cooled to 100 mK, detector NEP ranging from 2e-18 to 3e-17. ~1000 detectors per 3-band unit. • R=700-1000. • except 1 mm band: R=400-500 due to size limitation, can use second polarization with staggered channel spacing. Silicon devices coming! • Size: 75 cm by 60 cm. • Width ~5 cm, can stack 12-15. Array in ~2-D in the ~1m cryostat cryostat. Front end is set of warm quasioptical, elbowed-arm feed Seiffert / Goldsmith.

Prototyping CCAT Spectrometer Modules

SPICA and BLISS: The complement to CCAT for the next decade.

• Detector NEP: Requirement: 1e-19 W Hz^{-1/2}, Goal: 3e-20 W Hz^{-1/2}

• Gives sensitivity of 2e-20 W m⁻² (3σ, 1h) for Requirement and 1e-20 W m⁻² for Goal under conservative assumptions (photons contributing equally at goal sensitivity).

CCAT View of the Universe 13 Nov 2010

Matt Bradford

Thank you!