## Long Wavelength Cameras for CSO and CCAT

Sunil Golwala November 13, 2010

with thanks to the MUSIC instrument and science teams

## Outline

- CCAT long wavelength camera design considerations
- Enabling technologies
- MUSIC: a pathfinder on the CSO

## Instrument Design Criteria

- Science drivers
  - Push the luminosity limit down from 10<sup>13</sup> L<sub>Sun</sub> to 10<sup>12.5</sup> L<sub>Sun</sub>
    - upcoming cameras will reach confusion limit on ~few deg<sup>2</sup> in lifetime; starting to get to representative volumes, but would like few times larger
    - confusion limit at CCAT decreases by 2-3x relative to 15 m, 5x relative to 10 m
       → need x10 in mapping speed to get same area to new confusion limit, x100 to get 10s to 100s of deg<sup>2</sup> to confusion
  - Go out to much higher z
  - Obtain as much redshift information from photometry as possible
  - Cross-correlations rely on large area



Flux Density [mJy]

## Instrument Design Criteria

- Instrument requirements
  - " "Reasonable" increase in mapping speed to obtain the above:
    - SCUBA-2, MUSIC: A $\Omega$  ~3 m<sup>2</sup>  $\rightarrow$  CCAT gives A $\Omega$  ~40 m<sup>2</sup> at 20' FoV, ~400 m<sup>2</sup> at 1 deg
    - Gain ~2-3 in NEP from site, telescope
    - $\rightarrow$  x100 to x1000 in mapping speed
  - Simultaneous multiband coverage
    - obtain as much photometric information as possible on galaxies
    - Galaxy clusters: separate submm galaxy and cluster signals, detect kinetic SZ effect
    - multiple colors can separate sky noise and astronomical sources
    - Observatory efficiency! Appreciable amount of time unsuitable for short-submm observing.

## Instrument Design Choices

- Antenna-Coupled Architecture
  - Clearly can't do feedhorns at pixels counts we want
  - Bare absorbers are non-optimal
    - Single array doesn't work well across a wide band (pixel sizes, backshort distance)
    - Requires many dichroics or bandpass filters to get multiple colors
  - Single-pol antenna-coupled design offers "simple" way to cover multiple bands with varying pixel sizes simultaneously (but lose x2 in integration time)
  - Uses Nb slot antenna and microstrip: naturally limits shortest wavelength to 740  $\mu m$  (405 GHz) or 620  $\mu m$  (485 GHz).
- Longest wavelength set by pixel size, complementarity to other facilities;
  2 mm or 3 mm (150 or 100 GHz)

## Antenna Coupling and Inline Bandpass Filters

- Feedhorns are bulky, low fill-factor, and monochromatic
- Perform the beam definition with a phased-array antenna (Bock, Day, Zmuidzinas)
  - planar geometry, photolithographic fabrication
  - ~octave bandwidth
  - power exits on microstrip transmission line
  - bandpass filters may be inserted
  - separates optical absorption from power detection (decouples detector size)
  - power absorbed in MKID resonator



## Antenna Coupling



LW Cameras for CSO and CCAT

## **Antenna-Coupled Pixels**

• 100 GHz beam maps (SIS detector)



## Antenna Coupling

band I filter

- Colors defined by in-line bandpass filters
  - lumped-element LC filters
  - High out-of-band impedance allows many filters in parallel
  - Maximally efficient use of all photons received
  - Good match to SZ and thermal emission from dusty submm galaxies







## Multiscale Pixellization

- Single pixel size can only be ~optimal for 2-3 bands
- Change pixel size in binary manner with wavelength



## **Detector Options**

- Two reasonable options:
  - Superconducting transition-edge sensors (TESs)
  - Microwave kinetic inductance detectors (MKIDs)
- Pros and Cons
  - Sensitivity: TESs are background-limited, MKIDs not quite yet but should get there soon
  - Degradation under optical loading: slight advantage to MKIDs
  - Fabrication: Not a strong driver
  - Multiplexing: MKIDs easier in principle, TESs more advanced in practice
  - Cold electronics power dissipation: Advantage TESs
  - Microphonics Susceptibility: Advantage MKIDs
  - Magnetic Field Susceptibility: Advantage MKIDs
- Should use experience in field to judge at appropriate time
  - Many TES-based arrays out in field and working well, including antennacoupled.
  - MKID arrays to be first deployed with MUSIC, NIKA, ATACamera

## **Pixel Numerology**

- Design driven by desire to keep detector counts reasonable, yet gain substantially in mapping speed over SCUBA-2/MUSIC generation.
- Could increase 740  $\mu m, 870~\mu m$  pixel counts by ~x4 more if readouts capable



| Band<br>GHz<br>(µm) | Δν<br>(GHz) | Pixel<br>Size<br>f·λ | Number of Spatial<br>Pixels                                   |
|---------------------|-------------|----------------------|---------------------------------------------------------------|
| 150<br>(2000)       | 30          | 1.15                 | $16 \text{ tiles} \times 256 = 4096$                          |
| 220<br>(1400)       | 40          | 1.6                  | $16 \text{ tiles} \times 256 = 4096$                          |
| 275<br>(1100)       | 50          | 2.1                  | $16 \text{ tiles} \times 256 = 4096$                          |
| 350<br>(870)        | 40          | 0.7<br>2.8           | 4 tiles $\times$ 4096 = 16384<br>12 tiles $\times$ 256 = 3072 |
| 405<br>(740)        | 30          | 0.8<br>3.2           | 4 tiles $\times$ 4096 = 16384<br>12 tiles $\times$ 256 = 3072 |
| Total               |             |                      | 51,200 detectors                                              |

At f/2, 1 tile is approximately 74 mm across, a good fit for 4" wafer processing. Focal plane is 30 cm across, a "reasonable" size.

## Imaging Spectroscopy

- CCAT long wavelength cameras should reach confusion very quickly
- Multi-object spectrometer is necessary, but will rely substantially on preselection
- Imaging spectroscopy could provide useful intermediate capability
- FTS?
  - Can provide enough resolution to see CO ladder and other important lines; esp. useful if lines contribute substantially to flux
  - Frequency resolution can be varied on the fly by setting mirror travel
    - fast, coarse mode for higher-resolution continuum measurements
    - slower, fine mode for line searches
  - Sensitivity penalty ok given speed to confusion
  - Works in all bands at same time
  - Not clear how to get it into the optical train...

## MUSIC: A Multi-Color Camera for the CSO

- MUlticolor Sub/millimeter Inductance Camera
- New technologies enable ~background-limited, multi-color camera (850 µm - 2 mm) with wide FOV (14', 600 spatial pixels)
  - Planar photolithographic phased-array antennas: large-format arrays on a single wafer, ~octave instantaneous bandwidth
  - Planar photolithographic bandpass filters: many colors from a single antenna
  - Microwave Kinetic Inductance Detectors (MKIDs): a new, highly multiplexable detector
- Science goals
  - Submillimeter Galaxies (SMGs)
    - Wide-area surveys with multicolor information: find the high-z objects
    - Follow-up of Herschel SMGs: measure spectral energy distributions, select high-z
    - Study SMGs in lensed galaxy cluster fields
  - Galaxy clusters
    - Multicolor Sunyaev-Zeldovich effect observations of known clusters to study ICM, measure cosmological parameters in coordination with X-ray, optical/IR
    - e.g., followup of Planck catalog, HST CLASH program, etc.
- Open international access via CSO

## The MUSIC Team

- Instrument Team
  - CU: Jason Glenn, Phil Maloney, James Schlaerth
  - JPL: Peter Day, Rick LeDuc, Hien Nguyen
  - Caltech: Nicole Czakon, Tom Downes, Ran Duan, Sunil Golwala, Matt Hollister, Dave Miller, Omid Noroozian, Jack Sayers, Seth Siegel, Jonas Zmuidzinas
  - UCSB: Ben Mazin, Sean McHugh
- Survey Team
  - Arizona: Dan Marrone
  - Caltech: Ranga-Ram Chary
  - CU: Alex Conley
  - Rutgers: Andrew Bake
- Science Team
  - Caltech: Andrew Benson
  - CU: Nils Halverson
  - JPL/IPAC/Caltech: Colin Borys, Darren Dowell, Olivier Dore
  - USC: Elena Pierpaoli

## Multicolor Antenna-Coupled MKIDs

 $6 \times 6$  spatial pixel array  $\times 16$  to make full focal plane



single pixel



bandpass filters (2 colors)

#### Detector development funded by JPL RTD, NASA APRA, Moore Foundation

LW Cameras for CSO and CCAT



## Focal Plane Design

- FPU will be assembled from 16 subarrays on 8 wafers
- Must accomodate AR tiles
- I6 coaxes
- Blind mate design to simplify installation
- Only 16 signal connections!



## **Optics** Design



## **Optical Design**

#### **Strehl Ratio**



#### far-field beams



## Dewar/Optics Status

- Cryostat + sub-K fridge have been verified with optical loads
- Mag shield + optics tube + sub-Kelvin hardware have been bench-assembled and will go into dewar soon
- Warm optics done and ready for fit check and optical test



2-layer A4K mag shield < 1 mJy/degree mag signal



LW Cameras for CSO and CCAT

New relay optics (14' FoV) Sunil Golwala

### Submm/mm MKID Demonstration Camera

- 18-pixel/3-color DemoCam2 fielded in May/June, 2010, at CSO
- Close-to-final versions of antenna, bandpass filters, MKIDs
- All components functional, observed planets and bright sources

On the telescope

• Sensitivity ~250-500 mJy  $\sqrt{\text{sec}}$ , problems understood and in process of fixing



LHe/LN dewar



# 2.0×105 Mars, 1.5×10 single 1.0×105 pixel 5.0×104



Submm/mm MKID Demonstration Camera

# Coadds of G34.3 from May 26, 2010 simultaneous observation in 3 bands



## **MUSIC Status**

- System-level pieces coming together well
  - Dewar/cryogenics working well
  - New relay optics done
  - Iterating on RF readout electronics
  - Beams and bandpasses look good
- Challenges: sensitivity being limited by:
  - Low optical efficiency: 6-12% for device, expect ~50-60%.
    - Attacking with new antenna design, change of dielectric, diagnostic tests
    - Excellent efficiency demonstrated in similar BICEP2/Keck/SPIDER CMB arrays
  - Tile heating
    - Replace crystal quartz AR coat with etched silicon
  - I/f in electronics
    - New iteration with more careful thermal design
    - Studying RF amplifier 1/f; promising results obtained
  - Expect to solve these soon and go into production on science arrays!
- Instrument integration spring/summer 2011
- Commissioning in fall, 2011

## Conclusions

- Technologies being developed for powerful long-wavelength camera for CCAT
- Should think about an imaging spectroscopy option
- Will learn much from SCUBA-2 and MUSIC to inform the design
- MUSIC commissioning next year and doing science soon after!