SPT Science

Tom Crawford University of Chicago / KICP

Photo credit: J. Dana Hrubes

SPT Science (with an eye toward CCAT)

Tom Crawford University of Chicago / KICP

I. Intro / motivation (quick!)

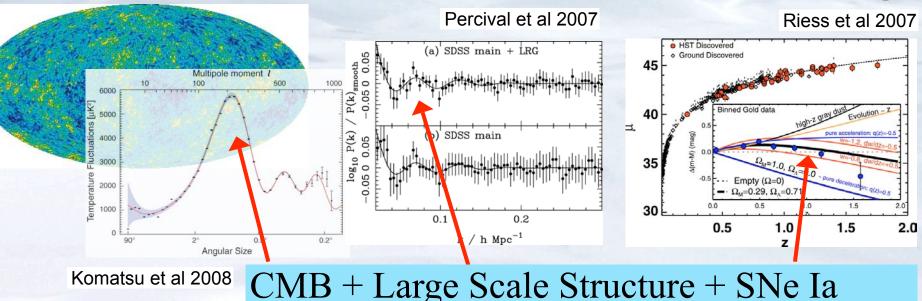
II. Galaxy cluster science

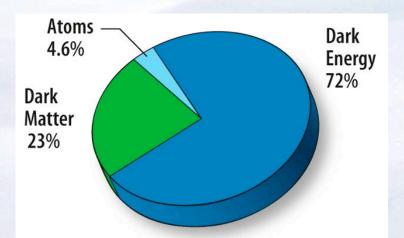
III. CMB anisotropy science

IV. High-z dusty galaxy science

I. Intro / motivation (quick!)

II. Galaxy cluster science


III. CMB anisotropy science


IV. High-z dusty galaxy science

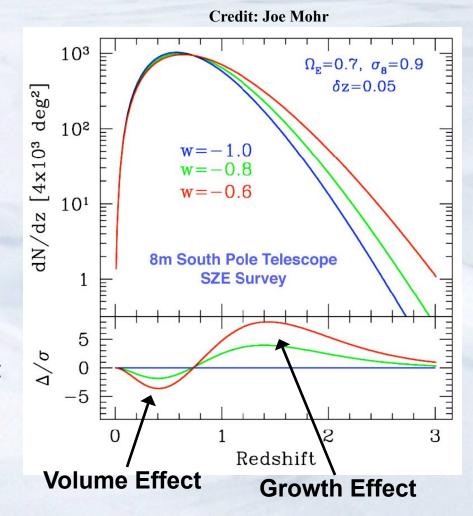
V. The Future?

I. Intro / motivation (quick!)

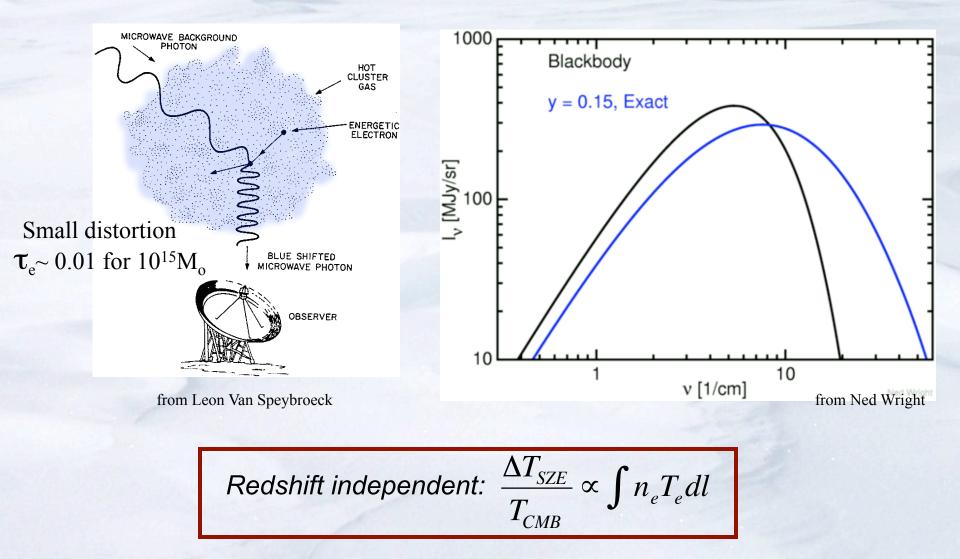
We Live in a Universe Dominated by Dark Energy

We live in a flat universe whose density is dominated dominated by dark energy

 $\Omega_{\Lambda} = 0.721 \pm 0.015$... but what is dark energy?


Dark Energy Constraints with Clusters of Galaxies

Cluster Abundance, dN/dz


 $\frac{dN}{d\Omega dz} = n(z) \frac{dV}{d\Omega dz}$ Depends on: Matter Power Spectrum, P(k)Growth Rate of Structure, D(z)

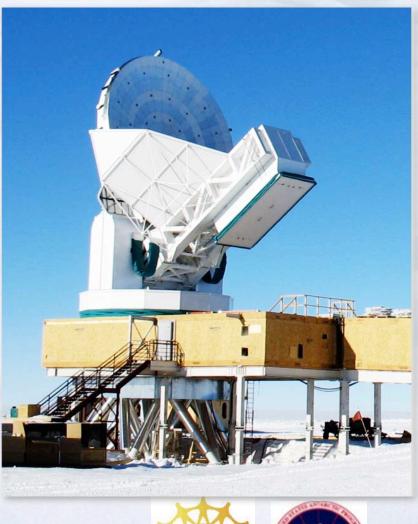
Depends on: \checkmark Rate of Expansion, H(z)

For fixed Ω_{DE} and less negative w: 1. Fewer clusters at low redshift, due to decreased volume surveyed 2. More clusters at high redshift, due to decreased growth rate

The Sunyaev-Zel'dovich Effect

Requirements for an SZ cluster-finding machine

Resolution


- 1' is well-matched to typical cluster size at these redshifts
- At 150 GHz this means you need a 8-10 meter dish

Mapping Speed

- (# of elements) / noise²
- At 150 GHz (from the ground), bolometers have reached photon background limit to sensitivity
- Previous SZ/CMB instruments have on the order of tens of pixels (e.g. - ACBAR =16, QUAD = 31 pixels, ...)

Need more background-limited detectors!!!

The South Pole Telescope (SPT)

Funded

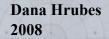
by NSF

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1' FWHM beam at 150 GHz)
- Off-axis Gregorian optics design
- 20 microns RMS surface accuracy
- 1 arc-second pointing
- Fast scanning (up to 4 deg/sec in azimuth)

SZ receiver:

- 1 sq. deg FOV
- ~960 background limited pixels
- Observe in 3+ bands between 95-220 GHz simultaneously with a modular focal plane



SPT Heroes Gallery

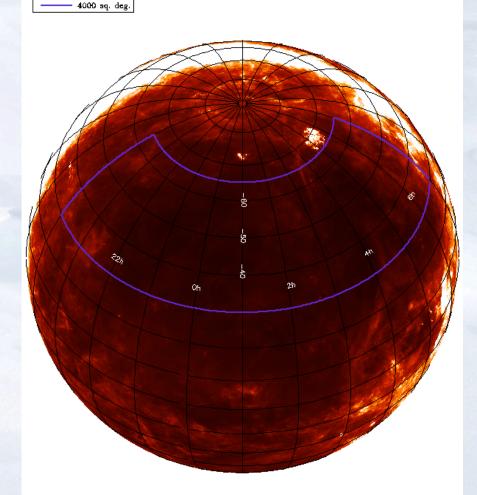
Dana Hrubes and

Daniel Luong-Van

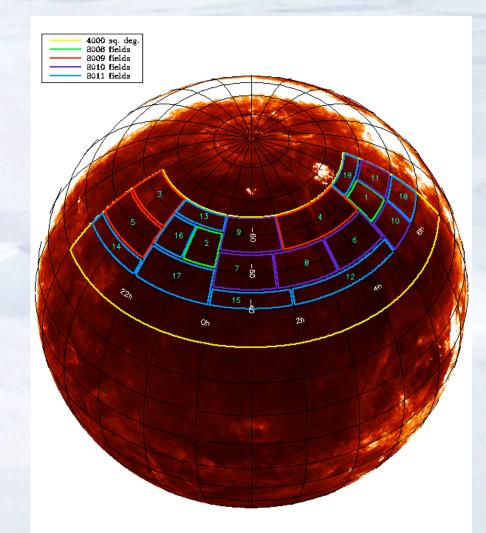
2010 AND 2011!!

1

Ross Williamson and Erik Shirokoff 2009



Zak Staniszewski 2007


The Survey

- Limited to Southern Celestial Hemisphere.
- Galactic dust emission drives to 20h < RA < 7h.
- Atmospheric emission drives to observing elevations > 30deg.
- Leaves us ~4000 contiguous square degrees.

The Survey

- So far have mapped >1500 square degrees to survey depth (and have peeked at the rest).
- Full survey will be ~2500 square degrees.
 (concentrate on higher-latitude / more-negative-dec regions)

SPT Survey Area and Depth

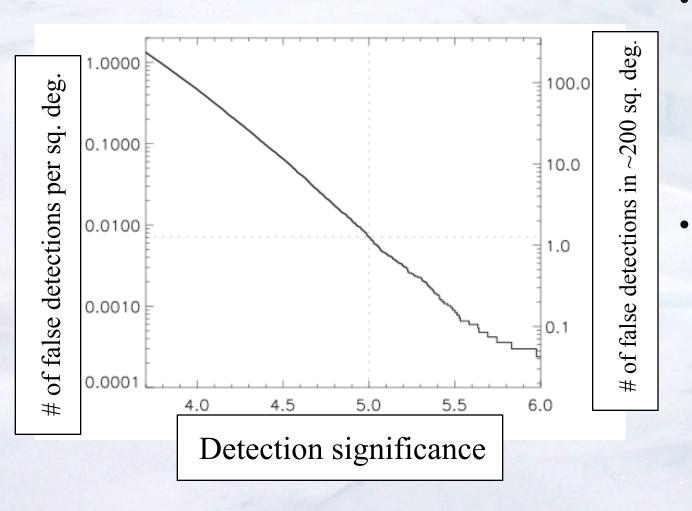
	2008	2x220 3x150	2009 2011	1x220 4x150 1x90	SPT Deep Field	done!	+ 3 months	???
band [GHz]	RMS [uK-arcmin]	RMS [mJy/beam]	RMS [uK-arcmin]	RMS [mJy/beam]	RMS [uK-arcmin]	RMS [mJy/beam]	RMS [uK-arcmin]	RMS [mJy/beam]
90	-	-	40	2.0	40	2.0	20	1.0
150	18	1.3	18	1.3	13	0.9	8	0.6
220	40	3.4	80	6.8	35	3.0	30	2.6
area [deg²]	200		2300		100		100	

100 deg² SPT Deep Field

3.2 mm

2.1 mm

II. Galaxy cluster science


SPT has found hundreds of new clusters!

Observ	ving year	Area surveyed (square degrees)	Candidates above 5 sigma	Candidates above 4.5 sigma	Candidates above 5 sigma w/redshifts	Candidates above 4.5 sigma w/ redshifts
2008		~200	22	39	21	28
2009		~600	75	142	67	94
2010 ((so far)	~600	104	165	43	51
TOTAL	-	~1400	201	346	131	173

SPT has found hundreds of new clusters!

Observing year	Area surveyed (square degrees)	Candidates above 5 sigma	Candidates above 4.5 sigma	Candidates above 5 sigma w/redshifts	Candidates above 4.5 sigma w/ redshifts
2008	~200	22	39	21	28
2009	~600	75	142	67	94
2010 (so far)	~600	104	165	43	51
TOTAL	~1400	201	346	131	173

SPT cluster detections are robust

- Simulations predict ~10 false positives above S/N=5 in entire survey (~100 above S/N=4.5).
- Borne out by optical/IR/x-ray follow-up of first catalog (only 1 spurious detection out of 22 in first ~200 sq. deg.)

T. Crawford, SPT Science, CCAT meeting, November 13, 2010

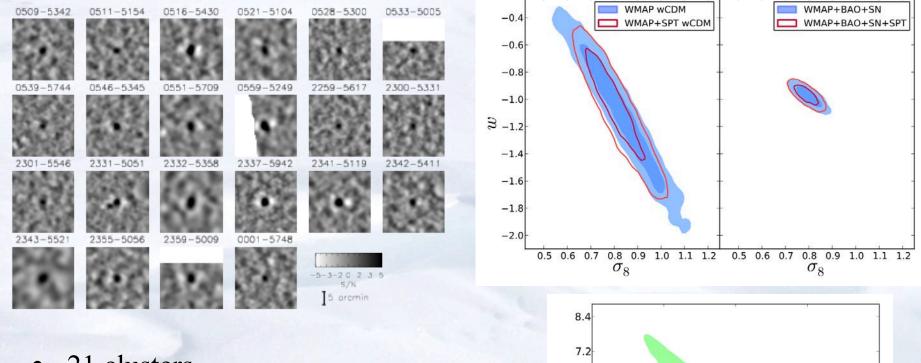
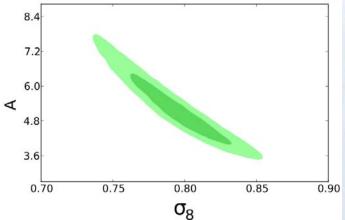

SPT clusters are all massive

TABLE 3 Cluster masses from $M_{500} - Y_X$ and $M_{500} - T_X$ relations


Name	z	r500 ^a kpc	M_{500,Y_X} $10^{14} M_{\odot}$	${}^{M_{500,T_X}}_{10^{14}M_{\odot}}$	${}^{M_{500,SZ,V10}^{ m b}}_{10^{14}M_{\odot}}$
J0000-5748 J0509-5342 J0516-5430 J0528-5300 J0533-5005 J0546-5345 J0551-5709 J0559-5249 J2331-5051 J2332-5358 J2337-5942 J2341-5119 J2342-5411 J2355-5056 J2359-5009	0.74 0.4626 0.2952 0.7648 0.8810 1.0665 0.4230 0.6112 0.5707 0.32 0.7814 0.9983 1.08 0.35 0.76	950 1062 1463 775 656 840 948 1043 972 1134 1046 847 647 1014 816	$\begin{array}{c} 5.32 \pm 1.16 \\ 5.43 \pm 0.60 \\ 11.84 \pm 1.25 \\ 2.97 \pm 0.89 \\ 2.06 \pm 0.53 \\ 5.33 \pm 0.62 \\ 3.56 \pm 0.43 \\ 6.40 \pm 0.54 \\ 4.70 \pm 0.51 \\ 5.66 \pm 0.48 \\ 7.43 \pm 0.90 \\ 5.06 \pm 0.66 \\ 2.47 \pm 0.32 \\ 4.18 \pm 0.43 \\ 3.45 \pm 0.67 \end{array}$	$\begin{array}{c} 6.74 \pm 5.14 \\ 6.71 \pm 3.40 \\ 12.34 \pm 2.13 \\ 3.05 \pm 4.00 \\ 2.25 \pm 1.71 \\ 5.25 \pm 1.13 \\ 3.00 \pm 0.85 \\ 7.07 \pm 1.49 \\ 4.91 \pm 1.36 \\ 6.69 \pm 1.08 \\ 8.10 \pm 2.18 \\ 5.20 \pm 1.69 \\ 2.39 \pm 0.63 \\ 4.26 \pm 1.57 \\ 4.97 \pm 2.61 \end{array}$	$\begin{array}{c} 2.89 \pm 0.61 \pm 0.41 \\ 4.26 \pm 0.74 \pm 0.60 \\ 6.48 \pm 0.95 \pm 1.13 \\ 2.83 \pm 0.60 \pm 0.38 \\ 2.71 \pm 0.56 \pm 0.37 \\ 3.25 \pm 0.51 \pm 0.44 \\ 4.10 \pm 0.75 \pm 0.58 \\ 5.03 \pm 0.74 \pm 0.70 \\ 4.63 \pm 0.73 \pm 0.66 \\ 5.19 \pm 0.85 \pm 0.83 \\ 6.32 \pm 0.84 \pm 0.97 \\ 4.05 \pm 0.58 \pm 0.63 \\ 2.65 \pm 0.50 \pm 0.37 \\ 4.17 \pm 0.80 \pm 0.63 \\ 3.32 \pm 0.60 \pm 0.46 \end{array}$

All optically confirmed SPT clusters with x-ray measurements show strong signal and temperatures consistent with massive clusters $(\geq 2 \times 10^{14} \text{ solar})$ masses).

First cosmological results with SZ clusters: Vanderlinde et al., 2010

- 21 clusters
- slightly improve on WMAP-only
- constraints limited by scaling relation uncertainties

Clusters and CCAT

- Lower noise:
 - lower in cluster mass function -> lots more clusters
- Higher resolution:
 - resolve core radius, enabling robust total Y measurement.
 - detect & remove point sources.
- Deep multicolor imaging:
 - high S/N on CMB in all bands.
 - kinetic SZ in individual clusters?

III. CMB anisotropy science

CMB anisotropy I: Large angular scales

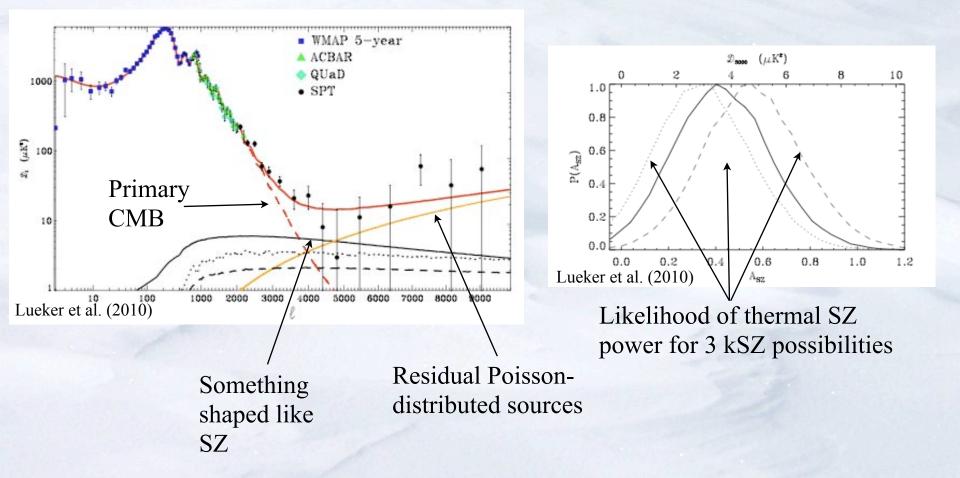
- ~800 square degrees of 2008-2009 150 GHz data.
- cosmicvariancelimited to \ellawbrace{-2300.

Keisler, et al. (2011, in prep.)

CMB anisotropy I: Large angular scales

- ~800 square degrees of 2008-2009 150 GHz data.
- cosmicvariancelimited to \ellawbrace{-2300.

Keisler, et al. (2011, in prep.)

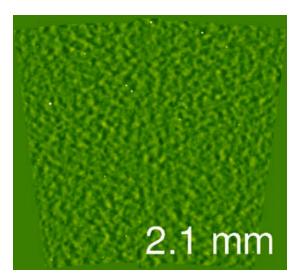

CMB anisotropy I: Large angular scales

Planck will nail this forever

Lots of interesting stuff to do here.

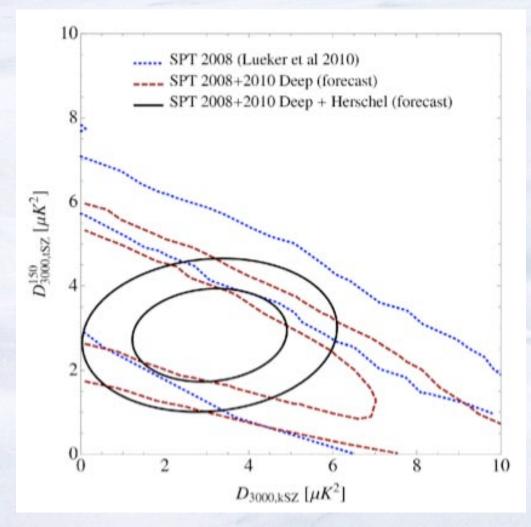
Keisler, et al. (2011, in prep.)

CMB anisotropy II: Small angular scales

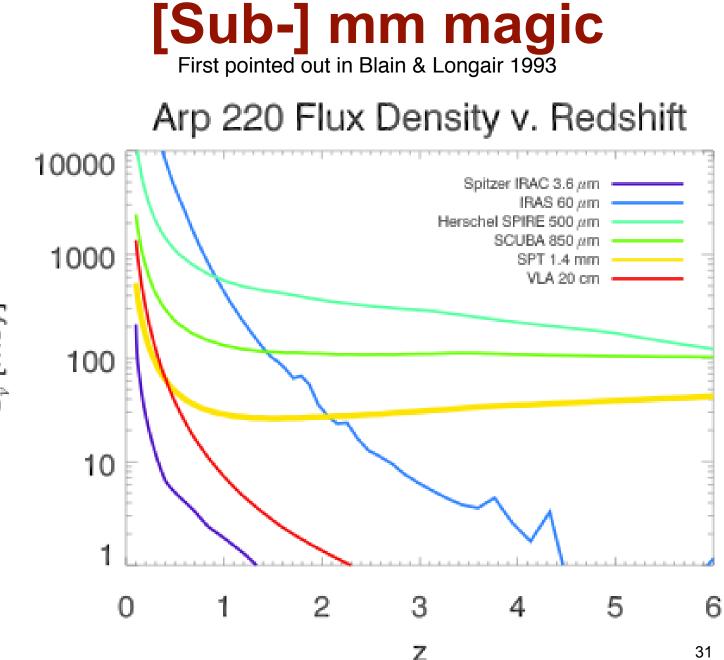


Measuring the Epoch of Reionization Herschel-SPIRE + SPT deep field

•SPIRE maps are nearly confusion limited in a single observation.

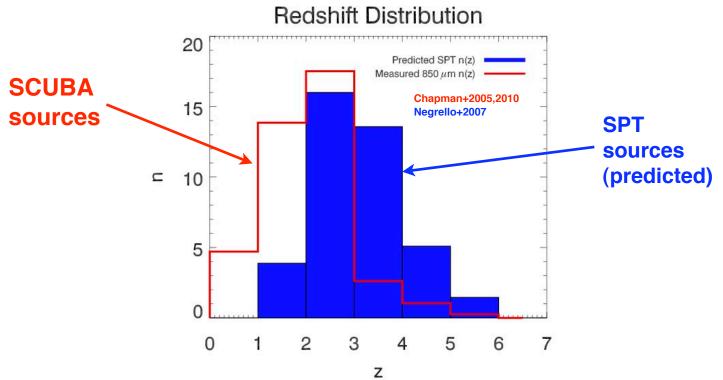

- •SPT 100 deg² deep field is the deepest mm map in existence and will remain so for the next decade.
- •We have been granted 79 hours to map a 100 deg² field.
- The SPT Deep Field will be enable many statistical measurements of large scale structure and the high redshift universe.

The HOTAC called this proposal a "must-do"


CMB anisotropy II: Small angular scales

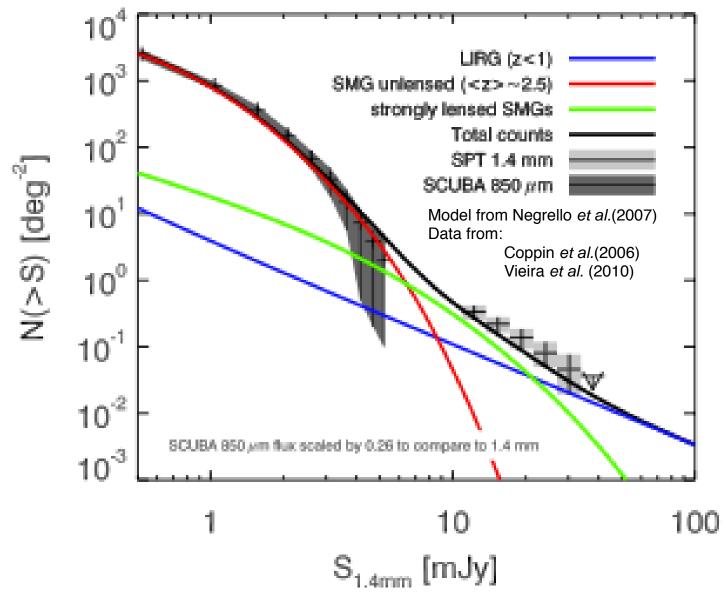
 projections for 100 square degrees of deep 0.5mm, 1.4mm, 2.0mm, 3.2mm data

• what could CCAT add here...


IV. High-z dusty galaxy science

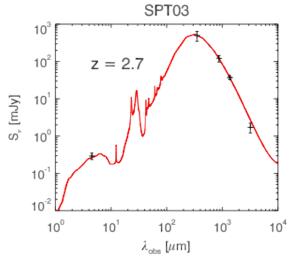
S, [mJy]

Redshift distribution predictions


~1/2 of these sources should be at z>3

- *longer-wavelength* surveys preferentially select *high redshift objects*.
- High redshift sources have a *higher probability of being strongly lensed*.

• Mapping *wide areas* leads to a greater chance for discovering *rare, luminous (or lensed) objects*.


Source Counts

R = IRAC 3.6 um G = SOAR K-band B = Gemini r-band SPT 1.4 mm dust SPT 2.0 mm SZ SABOCA 350 um

0

SMG03

lens @ z=0.404

Confirms VLT Ly-alpha redshift

V. The Future?

Near-term (mid-term?) plans for the SPT

2010-2011: Finish SZ survey

2012-2014: CMB polarimeter at 2.0 and 3.2 mm.

2015-beyond: ???- the telescope and site are submm quality, so.....

Thanks!

Photo credit: Keith Vanderlinde