Characterizing the earliest phases of star formation with submm (continuum) surveys

Melissa Enoch (UC Berkeley)

CCAT Workshop
13 Nov 2010

Physical Stage
a dark cloud

- Prestellar core Formation of a lowmass star

$K-200,000 \mathrm{AU}=\mathrm{N}$

(Shu et al. 1987;
Robitaille et al. 2006; Crapsi et al. 2008)
fig: McCaughrean

- Stage II star+disk; Menv < 0.1 Mo
- Stage I protostar Menv < Mstar; Menv > 0.1 M。

a dark cloud	- Prestellar core
- Starless core	

Formation of a low mass star

$\mathrm{K}-200,000 \mathrm{AU}=\mathrm{H}$

- Stage I protostar Menv < Mstar; Menv > 0.1 M。
- Class I: $70<T_{\text {bol }}<650 \mathrm{~K}$
(Shu et al. 1987;
Robitaille et al. 2006)
(Myers \& Ladd 1993) fig: McCaughrean

10^{6-7} yrs; $1-100 \mathrm{AU} ; 100-3000 \mathrm{~K}$
- Stage II star+disk; Menv<0.1 Mo - Class II 650<Tbol<2800 K

(Shu et al. 1987;
Robitaille et al. 2006)
(Myers \& Ladd 1993)
fig: McCaughrean

- Stage II star+disk; Menv<0.1 Mo - Class II $650<$ Tbol<2800 K
(Sub)millimeter surveys are critical for:

1. Prestellar core mass distribution (CMD)

- Relationship between cores \& star properties
- Test of core formation models

2. Timescales for star formation

- Physics of core formation \& support
- Average accretion rates

3. Characterizing embedded sources

- Evolutionary state, luminosity, envelope mass
- Evolution of accretion rates \& envelope mass with time

Bolocam Galactic Plane Survey

- $150 \mathrm{deg}^{2}, \lambda=1 \mathrm{~mm}, 31^{\prime \prime}$ res
- 8000 star forming clumps
- 98% complete at 0.4 Jy (clumps >10 Msun)

Herschel Gould Belt

- In progress
- $160 \mathrm{deg}^{2}$
- $\lambda=100-500 \mu \mathrm{~m}$, $\sim 15^{\prime \prime}$ res
- Mass limit <0.3 Msun

Andre et al. 2005, 2010

Identifying cores \& embedded protostars

> Bolocam 1.1 mm continuum surveys

- Enoch et al. 2006; Young et al. 2006; Enoch et al. 2007

- Jorgensen et al. 2006; Rebull et al. 2007; Harvey et al. 2007a, 2007b; Padgett et al. 2008

- Jorgensen et al. 2006; Rebull et al. 2007; Harvey et al. 2007a, 2007b; Padgett et al. 2008

1. Prestellar core mass distribution

- Clues to the origin of stellar masses (core, feedback, competitive accretion)

$M_{\text {star }} \neq M_{\text {core }} \quad M_{\text {star }} \neq M_{\text {core }}$
- Initial conditions for star formation
- Core formation physics
- Mass from (sub)mm flux (if dust temp \& opacity known)
$-M e n v=d^{2} S_{v} / B_{v}\left(T_{D}\right) K_{v}$

1. Prestellar core mas

- Clues to the origin of stellar mass competitive accretion)

$M_{\text {star }} \propto M_{\text {core }} \quad M_{\text {star }} \neq M_{\text {core }}$

$\mathrm{M}_{\text {star }} \neq \mathrm{M}_{\text {core }}$
- Initial conditions for star formation
- Core formation physics
- Mass from (sub)mm flux (if dust temp \& opacity known)
- Menv $=d^{2} S_{v} / B_{v}\left(T_{D}\right) K_{v}$
- Clues to the origin of stellar mass competitive accretion)

- Core formation physics
- Mass from (sub)mm flux (if dust temp \& opacity known) - Menv $=d^{2} S_{v} / B_{v}\left(T_{D}\right) K_{v}$

1. Prestellar core mass distribution

2. Timescales for star formation

Tassis \& Mouschovias 2004

2. Timescales for star formation

Gravo-turbulent fragmentation (e.g. Mac Low \& Klessen 2004)

2. Timescales for star formation

 Starless Class 0 Class I Class II

- IF steady SF AND no mass dependence AND evolutionary sequence, then $\dagger 1 / \dagger 2=\mathrm{N} 1 / \mathrm{N} 2$. For \dagger (Class II) $=2 \mathrm{Myr}$,
(2) $\mathrm{t}($ Class I$)=0.38 \mathrm{Myr}, \mathrm{t}($ Class 0$)=0.16 \mathrm{Myr}, \mathrm{t}(\mathrm{SL})=0.45 \mathrm{Myr}$

2. Timescales for star formation

Tassis \& Mouschovias 2004

Kenyon et al. 1990; Cieza et al. 2007;
Spezzi et al. 2008

2. Timescales for star formation

Tassis \& Mouschovias 2004
Enoch et al. 2008; Jørgensen et
al. 2007; Hatchell et al. 2008
Enoch et al. 2009; Hatchell et al. 2007
Evans et al. 2009

3. Characterizing embedded sources

SED \rightarrow luminosity, envelope mass, evolutionary state ($T_{\text {bol }}$)

Envelope mass evolution

Infall from envelope to disk is nearly constant w/ time

Luminosity evolution

Evans et al. 2009;
Dunham et al. 2010

Luminosity evolution

(e.g. Kenyon et al. 1990; Vorobyov \& Basu 2006)

What we've learned with (sub)mm surveys

- CMD (still) looks like IMF, within (large) error bars - Stellar masses determined at the core formation stage?
- Likely 10-30\% efficiency
- Starless core lifetime a few free-fall times; Class 0 timescale similar to Class I
- Dense cores not dominated by magnetic fields
- Approximately constant average accretion rates throughout embedded protostar phase
- Large luminosity spread in embedded protostars - Suggests episodic accretion is the "standard" accretion mode

But....

- CMD has large errors, haven't seen turnover

But....

- CMD has large errors, haven't seen turnover

But....

Enoch et al. 09
Also, prestellar core lifetime
(Hatchell et al. 2008; Netterfield et al. 2008)

- CMD has large errors, haven't seen turnover
- Timescales vary with environment?

But....

- CMD has large errors, haven't seen turnover
- Timescales vary with environment?
- Masses rely on assumed dust temperature

But....

- CMD has large errors, haven't seen turnover
- Timescales vary with environment?
- Masses rely on assumed dust temperature
- Need larger protostar sample to test accretion models

CCAT

Opportunities

- Much improved sensitivity
- Wide field mapping for large samples
- Better resolution to minimize blending
- Multiple $\lambda \mathrm{s}$ to constrain temp, improve mass estimates

CCAT Opportunities

> Observe CMD turnover (if present), reduce errors in slope, test "universality"
> Better statistics for timescales, test dependence on mass, density, environment
$>$ Refine luminosity distributions to directly test accretion models, push to protosubstellar objects

Opportunities

0.5 Myr 0.2	2+0.4 My	2 Myr	
Phase A	Phase B	Phase C	Main
"Starless Cores"	Accreting Protostar	T Tauri Stars	Sequence Stars
$\tau_{\text {A }, \text { obs. }}$			

$>$ Observe CMD turnover (if present), reduce errors in slope, test "universality"
$>$ Better statistics for timescales, test dependence on mass, density, environment
$>$ Refine luminosity distributions to directly test accretion models, push to protosubstellar objects

> Observe CMD turnover (if present), reduce errors in slope, test "universality"
> Better statistics for timescales, test dependence on mass, density, environment
$>$ Refine luminosity distributions to directly test accretion models, push to protosubstellar objects

