

Very High Redshift Galaxies with, IRAM, ALMA and CCAT

Alain Omont (IAP, CNRS and Université Paris 6) Herschel

S. ERIES Carriella.

On behalf of the H-ATLAS Team and the IRAM Team

> See W. Gear J. Wardlow

Outline

High-z (lensed) galaxies in Herschel-Atlas wide survey

- The H-ATLAS survey at high z see *W. Gear* Prediction and identification of strong lenses in first observations (SDP)
- Properties of the strong lensed SMGs already identified:
 - SEDs, blind z_{CO} , imaging, molecular lines
- Prospects for the whole sample of high-z lensed SMGs to be expected from H-ATLAS
- Examples of ALMA programs possible with Herschel high-z lensed galaxies
 - Redshifts
 - High-resolution imaging
 - High sensitivity spectroscopy
 - Golden objects

Role of CCAT for selecting best Herschel sources for ALMA

- Disentangling blended sources and providing accurate positions
- Analyzing proto-clusters through multi-object spectroscopy

The power of gravitational lensing Since 20 years lenses have marked the frontier of mm radioastronomy

Rowan-Robinson's galaxy Eyelash (Swinbank+)

APM08279+5255

The H-ATLAS survey see W. Gear OpenTime Key Project Pls: Steve Eales & Loretta Dunne

Total expected: 550 deg², ~600h

Current processed data for ~120 deg²

2. The positions of the ATLA field, shown as white blocks, superimposed on the IRAS 100 μ m map of the sky, which trace

- Early data: SDP Field 14.4 deg2 Within 9h equatorial GAMA AAT spectroscopy field, plus SDSS, etc.
- Sensitivity
- Similar instrumental and confusion contributions to total noise
- Total 5- σ limits are 33, 36, 45mJy/beam at 250, 350, 500 μ m, respectively
- Counts in Clements et al. 2010
- ~500 5 σ sources per deg² (mostly 250-350µm, slightly above the confusion limit) >50% at z>1 \rightarrow ULIRGs SMGs (~300 per deq²)

A LENSING SCIENCE CASE FOR H-ATLAS Reproduced from See J. Wardlow

Sub-mm surveys are ideal for finding lenses

Blain (1996), Perrotta et al. (2003), Negrello et al. (2007)

500 μm Brightest Galaxies in **H-Atlas SDP**

see W. Gear H-ATLAS SDP field ~14.4 deg² 7000 sources 11 sources with $S_{500\mu m} > 100 \text{ mJy}$ 4 nearby galaxies (z<0.05), 1 blazar, 1 galactic blob \rightarrow 5 high z candidates

ID9 :
$$S_{500\mu m} = 175 \pm 28 \text{ mJy}$$
 $z = 1.577$
ID11 : $S_{500\mu m} = 238 \pm 37 \text{ mJy}$ $z = 1.786$
ID17 : $S_{500\mu m} = 220 \pm 34 \text{ mJy}$ $z = 2.308$
ID81 : $S_{500\mu m} = 166 \pm 27 \text{ mJy}$ $z = 2.626$
ID130 : $S_{500\mu m} = 108 \pm 18 \text{ mJy}$ $z = 3.402$

Negrello et al. 2010

SED of lens candidates in H-ATLAS S DP field

clear cases of double-source SEDs z~0.2-0.8 elliptical galaxy + high-z ULIRG

Best, highest-z H-ATLAS SDP lenses

Sub-Millimeter Array images at 870µm

Extended images: gravitational arcs on top of the lens galaxy

Red 870µm contours on top of I Keck image

GRAVITATIONAL LENS CANDIDATES ID81

see W. Gear

CSO/Z-spec blind redshift determination for **ID81** (March 09 2010) from observations of the **CO ladder** Redshift confirmed by **follow-ups** with the **PdB Interferometer** (March 23 2010) and **GBT/Zpectrometer** (March 25 2010)

Redshifts of the 4 other candidates confirmed (1.5-2.6) by Zspec (+Zpectrometer, PdBI & CARMA)

Conclusion

The 5 lens candidates of the H-ATLAS SDP field are fully confirmed (z=1.5-3)

Source counts are in full agreement with Negrello's models

Submm photometric redshifts

Ratios S₂₅₀/S₃₅₀ & S₃₅₀/S₅₀₀ plus a template such as Arp220 → submm z-phot

Good agreement with z_{co} for 6 sources with z_{co}

A good value of z-phot is important for searching z_{CO} with a limited bandwidth Adding 1.2mm MAMBO flux helps: S_{1.2mm}=10-40mJy Dannerbauer+

Measuring z_{c0} at z>~4 is difficult with Zspec, 0.5 impossible with Zpectrometer → PdBI, EMIR or CARMA blind search e.g. ID15.141 see W. Gear

Blind detection of 3mm CO(3-2) [four 3.6GHz wide setups]

 $S_{1.2mm}$ =36mJy \rightarrow blind z_{CO} =4.24 at PdBI

Confirmation of zCO with 2mm CO(5-4)

ID15.141

Intrinsic properties of the high-z lensed galaxies identified

≻ L_{IR} All apparent IR luminosities ~3-5 10¹³ Lo Typical expected amplifications of ~8-15 → ~2-6 10¹² Lo → ULIRGs

CO lines

Complete Zspec spectra ~200-300GHz (Lupu et al. to be submitted to ApJ)

Lupu et al. to be submitted to ApJ

Intrinsic properties of the high-z lensed galaxies identified

• L_{IR} All apparent IR luminosities ~3-5 10¹³ Lo Typical expected amplifications of ~8-15 \rightarrow ~2-6 10¹² Lo \rightarrow ULIRGs

- CO lines:
- Complete Zspec spectra ~200-300GHz (Lupu et al. to be submitted to ApJ)
 Several CO lines. Turnover <~CO(6-5) in several sources
 However, strong CO(8-7) in ID17 (also tentative detection of H₂0)
- CO profiles from PdBI and CARMA, widths ~200-500 km/s
- → normal SMGs (hints of AGN in a few)
- C⁺ detected in ID15.141 (z=4.24) at APEX low ratio C⁺/CO (Cox et al. in prep.)

Prospects for the whole sample of high-z lensed SMGs to be expected from Herschel

5 lenses in SDP 14.4 deg² would extrapolate to 215 into the 720 deg² to be observed by H-ATLAS+HerMES surveys

However there is indication that the density could be smaller in other fields

Anyway the total number of lenses with $S_{500} > 100$ mJy should be > 100

> The number of sources increases rapidly in the range S₅₀₀ ~ 60-80 mJy With many sources with S₅₀₀ > S₃₅₀, probably at z >~4 (MAMBO proposal) These lenses could be the best way to assess the relative number of bright SMGs at z > 4

Some of them could be the tip of the luminosity function of unlensed SMGs

They are also detected in great number in 1.1-1.4 mm surveys such as SPT (*Vieira et al. 2010*)

Anyway, there will be 100's of strongly lensed sources available for ALMA

Large effort at IRAM this Winter to confirm and characterizeH-ATLAS strong lenses

High-resolution PdBI observations of 6 H-ATLAS lenses Cox & Ivison et al. ~90h CO lines J_{up}=3-7 (depending on z) will resolve the CO on scales of ~300pc tracing the internal excitation variations & star-formation within representative high-z ULIRGs

Also a small PdBI project to confirm strong H_2O emission in ID17

> Finding a large sample of lensed galaxies at z>4 (120 deg²)

Large effort at IRAM this Winter to confirm and characterizeH-ATLAS strong lenses

High-resolution PdBI observations of 6 H-ATLAS lenses Cox & Ivison et al. ~90h CO lines J_{up}=3-7 (depending on z) will resolve the CO on scales of ~300pc tracing the internal excitation variations & star-formation within representative high-z ULIRGs

Also small PdBI project to confirm strong H₂O emission in ID17

Finding a large sample of lensed galaxies at z>4 (120 deg²) 3 steps:

Select ~25 500µm-peakers without evidence of being local (S₅₀₀>60mJy)

- 1.2mm MAMBO observations to better constrain z-phot (and confirm they are indeed high-z sources)
- Blindly find z_{co} at 3 mm at PdBI in ~10-20 best candidates

Plus MAMBO extension to prominent H-ATLAS 350µm-peakers, with redshift measurement with Zspec or Zpectrometer (plus HerMES sources) altogether ~100 sources observed with MAMBO

Large effort at IRAM this Winter to confirm and characterize H-ATLAS strong lenses

 \rightarrow Begin to product a very large sample of lenses with various goals:

• Studying high-z sources below the confusion limit

Check lensing dark matter structures

Search for a few 'golden lenses' with several high-z galaxies

• Explore SMGs at z>4

• Prepare detailed studies with ALMA of structure & dynamics at high-resolution, with deeper sensitivity

Examples of ALMA programs possible with Herschel lenses

- Blind CO redshift determination and the highest redshifts
 - Finding redshifts for 100's sources remain a major issue
 - z_{co} is a must. May be extremely rapid with ALMA (1-2 3mm frequency settings)
 - Devise the best strategy
- ALMA high-resolution imaging of strong lenses
- The example of SMMJ2135 (Eyelash) (Swinbank et al.2010) shows how very detailed investigations of its ISM are possible
- ALMA can do that in the continuum, CO lines & C⁺line etc.
- Structure of the ISM and SF; AGN molecular torus
- Dynamics: rotation, M_{dyn}, mergers, outflows, etc.
- High sensitivity molecular (and atomic) spectroscopy
- Golden objects

Examples of ALMA programs possible with Herschel lenses

- Blind CO redshift determination and the highest redshifts
- ALMA high-resolution imaging of strong lenses
- High sensitivity molecular (and atomic) spectroscopy
 - Comprehensive dataset of lines (e.g. SMM J2135 Swinbank+2010)
 - Detailed checks of the interstellar chemistry →PDRs, XDRs, shocks etc

- Deuterated species (\rightarrow chemistry) and isotopologues ¹³CO, C¹⁷O, C¹⁸O, H¹⁸O \rightarrow nucleosynthesis + radiative transfer

- Specific classes of sources: AGN, radio loud, various intrinsic L_{IR} ~10¹¹-10¹³ Lo, various environments; megamasers OH, H₂O

Golden objects

Examples of ALMA programs possible with Herschel lenses

- Blind CO redshift determination and the highest redshifts
- ALMA high-resolution imaging of strong lenses
- High sensitivity molecular (and atomic) spectroscopy

Golden objects

- "Golden lenses", with two background sources lensed by the same galaxy, making possible cosmological tests that are independent of the mass of the lens.

- Radio loud strongly lensed sources with possibility of observing absorption molecular lines in the intervening lens galaxy or in the radio galaxy

- Etc.

A very wide SPIRE shallow survey such as HSLS (see J. Wardlow) would tremendously increase the number of strongly lensed galaxies and populate rare classes of objects for comprehensive ALMA studies

Role of CCAT for selecting best Herschel sources for ALMA

- Analyzing proto-clusters through multi-object spectroscopy
- Disentangling blended sources and providing accurate positions

Role of CCAT for selecting best Herschel sources for ALMA

Analyzing proto-clusters through multi-object spectroscopy

Providing redshifts for high-z Herschel sources is probably the most important issue for their exploitation

• Even for the very strongest lensed sources, measuring the redshifts of several hundreds sources will take years.

• However, they are only the very tip of the iceberg. There are thousands of weaker lenses potentially interesting, as well as tens of thousands of unlensed sources

• They will be key for addressing various major problems such as those discussed above about beating confusion, analyzing dark matter lensing halos, 'golden lenses', high sensitivity gains, and others including

- Clustering of ULIRGs at high z (proto-clusters, filaments ...)

- Star formation in the first massive galaxies at z>5

- Star formation in standard galaxies at the epoch of reionization through strong gravitational amplification

 Measuring redshifts for that, even in a very small part of high-z Herschel sources will be an enormous task

CCAT is unique for that in two respects:

- Directly measuring CO and C+ redshifts with its MOS
- Disentangling blending and providing accurate positions for NIR MOS

Role of CCAT for selecting best Herschel sources for ALMA

Disentangle blended sources and provide accurate positions

Even at 250µm the Herschel beam is very large (~18''). The difficulty of associating SPIRE sources with optical/NIR sources is worse than with SCUBA. This may prevent NIR redshift searches even with JWST

> Blending may plague SPIRE photometry especially at 350-500µm.

> Reobserving with CCAT some areas selected from SPIRE data, will overcome these problems, e.g. for:

- near-IR redshift determination
- analyzing fields with rich multi- λ data
- proto-cluster studies, including at z >~ 5
- detecting sources below the Herschel confusion limit associated with Herschel structures
- detecting double galaxy occupancies of dark matter halos
- analyzing Planck overdensities

This will much improve the use of Herschel data and their follow-up with ALMA

Summary

- > With Herschel (together with SPT), wide submm surveys at poor resolution are already there for thousand sq. deg.
- This warrants background complementary information to best
 tailor CCAT programs at high z, in order to thus feeding ALMA
 (and JWST) with best sources
 - Priorities for exploiting Herschel sources with CCAT seem:
 Measuring redshifts with CCAT/MOS
 - Finding and deeply investigating high-z DM structures
 - Exploring highest redshifts, >~4-5, up to reionization
 - Exploiting gravitational amplification by finding the best lenses •for ALMA (and JWST)
 - We also need very wide 870µm surveys (see J. Wardlow, M. Fich)

Conclusion

Prospects for the whole sample of high-z lensed SMGs to be expected from Herschel

5 lenses in SDP 14.4 deg² would extrapolate to 215 into the 720 deg² to be observed by H-ATLAS+HerMES surveys

However there is indication that the density could be smaller in other fields

Anyway the total number of lenses with $S_{500} > 100$ mJy should be > 100

> The number of sources increases rapidly in the range $S_{500} \sim 60-80$ mJy With many sources with $S_{500} > S_{350}$, probably at z >~4

These lenses could be the best way to assess the relative number of bright SMGs at z > 4

Some of them could be the tip of the luminosity function of unlensed SMGs

They are also detected in great number in 1.1-1.4 mm surveys such as SPT

Anyway, there will be 100's of strongly lensed sources available for ALMA

Prospects, strategy and questions

- There will be 100's of strongly lensed sources available for ALMA
 - Object selection in function of goals
 - Systematic studies of specific classes if populated enough
 - Muli- λ studies: EVLA, JWST, HST, etc.

• However we could like to have even more strong lenses as could be provided by the proposed Herschel-SPIRE Legacy Survey (HSLS) that would cover 4000 deg^{2.}

This would allow in particular to populate rare classes of objects for comprehensive ALMA studies, e.g.

- highest redshifts, z>4 even z>5
- strong AGN of various types radio loud
- L_{IR}> 10¹³Lo, L_{IR}<10¹²Lo
- H2O mega-masers
- cluster lensing extremely strong amplification, etc.

• Studies of the lensing galaxies through ALMA observations will have important cosmological applications

But detailed lensing models are needed for inferring properties of lensed SMGs

• Anyway, ALMA will have a fantastic time with such sources!

Herschel high-z extragalactic wide surveys

- > H-ATLAS 550 deg²
- HerMES 70 deg2 deeper

Both mostly SPIRE (250, 350, 500µm) close to confusion limit

Plus

- PACS surveys: smaller areas, deeper
- HLS: lensing clusters,

Etc.

Proposed HSLS 4000 deg², purely SPIRE

Etc.

GRAVITATIONAL LENS CANDIDATES ID81 – ID130

Sub Millimeter Array follow-up at 870 µm

(very-extended, sub-compact and compact configurations)

Extended images: gravitational arcs on top of the lens galaxy

