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The state of things in 1984

1x1 Bolometer array
42” beam, 50 Jy/Hz2

W51 at 400 um

Jaffe, Becklin, & Hildebrand 1984
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Molecular Clouds in Galaxies (yesterday)

Global Star Formation (yesterday and Paul Goldsmith))
Dense Hot Cores (Juergen Stutzki started this)
Individual Clump/Star Formation (now and Darek Lis)
Planet Formation (now)

At every stage of the evolution from diffuse ISM to planetary bodies,
there is a winnowing of material that is paralleled by a physical and
chemical evolution. CCAT can help determine what fraction goes

where and the physical and chemical state of the ‘leftover’ material.



CCAT can contribute by:

Arrays (important for first problem)
Giving context to compact sources

Small Arrays| Filling in zero spacings
Large bandwidtlyrveying large spectral regions
Good surfacd, haitelo (o highest frequencies

SRS Looking at lower excitation material that is somewhat more
extended by separated kinematically
Behavior at edges

Large Focal 1|a§grveying large areas while preserving good spatial resolution

A gift of fiIIec1
apertures

Good sensiti\*tyXancpompanion to IR absorption studies.
spatial discrimination



Gas Participation Fractions for

Molecular Clouds in Galaxies

What fraction of the ISM is bound up in molecular gas?

This is really a problem for cm/mm spectroscopy



The strong relation between amount of dense gas and star formation
can be elaborated and explained by mapping galaxies and galactic
cores in higher J states of molecules with high n
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Star formation scaling law is different than for CO.
What will happen if you select even denser/warmer gas?

c2d results on Perseus cores
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Gas Participation Fractions for

Dense Hot Cores:

In high mass star forming
regions, what fraction of the
mass is in the very dense, hot
regions and what is the physical
and chemical (also dynamical)
state of the rest of the material?
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Massive cores start out with large amounts of
very dense, fairly cool gas. How much of this remains
unaffected by star formation once it gets going?
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What is the nature of all that stuff in the periphery
of the core or in the “missing flux™?

A combination of chemistry, excitation, and kinematics
is the key.
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PDR’s, Clumpiness, and the chemical structure of massive
Star forming regions.
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Gas Participation Fractions for

Individual Clump/Star Formation

For solar-mass stars, what defines the boundary between
material participating in collapse and what remains?
How does the position of the boundary and the mass
fraction that remains differ in isolated and cluster formation?

What is the physical and chemical nature of the remaining
material?



Extended edges will be a strength of CCAT

at n=3x104 cm= and 140 pc, 102'cm-2 corresponds to 16 arcsec
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Why do you better in low G PDRs? Closer 3x, density lower 10x
=> 30x better “resolution”



Within the cores themselves,

the evolution of star forming cores involves the on-again off-again
relationship of gas and dust

Lee, Bergin, & Evans 2004, 100,000 years
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CCAT and the upcoming revolution in IR spectroscopy
Solid state features with JWST
Gas absorption with TMT/GMT/ELT and next generation IR spectrographs

Texes 0.9m grating
(Lacy et al. 2003)




Some molecules are only accessible in the IR
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IR spectra also give you many transitions along a single
line of sight.

+ - 2
Hy and Hy" absorption toward NGC 2024 IRS 2 1200(2,0) R(0)-R(10) towards AFGL 490 and AFGL 2591
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First detection of H3+ and H2 in same source (Phoenix at KPNO)
Courtesy Craig Kulesa (U. Arizona)




Optical depth

Mid-IR Ice bands in the pOph Core (Pontoppidan 2006)

HO 3.08 um stretch
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CCAT can probe gas chemistry and excitation along these same

lines of sight. ALMA cannot.



Mapping ice/gas properties in protostellar cores

Pontoppidan (2006)
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The improvements in infrared sensitivity and wavelength
coverage will allow us to probe numerous lines of sight
through a given cloud core in absorption.

Probing these same lines of sight in emission brings us a
whole host of other molecules and allows us to probe the
evolution of dust/gas chemistry.



Gas Participation Fractions for

Planet Formation

Planetary bodies have a hard time assembling very close
to or very far from the parent star. Infrared spectroscopy
can sample the inner transition very effectively.

Submillimeter spectroscopy can allow us to probe the
outer transition.

CCAT can (1) tell us which transitions are important
(2) Probe transitions at the highest frequencies



Infrared probes the inner few AU, millimeter on scales of 100 AU.
In between, you pass through the snow line and out of the region
where planets form.

Salyk et al. 2007
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There may be many lines revealing different aspects of the disk
physics and chemistry.
Ceccarelli and Dominik (2005)

C. Ceccarelli and C. Dominik: Deuterated HJ in proto-planetary disks 589
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Table 3. Line fluxes of the ground transitions of the ortho and para
form of HaD* and the HDY respectively, for the standard case. The
velocity-integrated line intensities, expressed in main beam tempera-
tures, TppAe are computed assuming observations at CSO and JCMT
of the 0-HyD* and p-HD? transitions respectively.

oH:D* pHD* oHD! p-HD}
Transition Lio=liy log=%p0 lLia=0sp lio—lag
v (GHz) 3724 1370.1 1476.6 691.7
Flux erg/s/cm? 82e—18 1.0e-16 57e-17 2.6e-18
TapAv (MK kms™) | 18.8° - - 4.8°

% Note: the main beam efficiency is assumed to be 0.6 at CSO and 0.3
at JCMT.



log n(x)/n,

log n(x}/n.

log n(x)/ny
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Willacy (2007) vertical distributions in
protostellar disks.
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Carr and Najita 2008. Q branches of major molecules labeled. Diamonds show
water lines.
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Carr & Najita (2009) Unmarked features are water
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1

Chemical abundances in
the AA Tau disk from

Carr & Najita (2008)
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Gas content as a function of radius and age.
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CCAT, by virtue of its high frequency capability, can do a good
job of filling the gap between the millimeter and IR studies and,
at the same time, probe one of the most important parts of the disk.
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Thanks!






