## **High Resolution Spectroscopy with CCAT**

Jürgen Stutzki

I. Physikalisches Institut, Universität zu Köln

Kölner Observatorium für Submm-Astronomie (KOSMA)

remark:

**KOSMA** together with

Radioastronomy group at the Argelander Institut für Astronomie (AifA)

Frank Bertoldi, Universität Bonn

aim at CCAT participation at 10% level, supported by universities and local federal state (Nordrhein-Westfalen, NRW)



## **High Resolution Spectroscopy with CCAT**

- science needs for high spectral resolution
- instrumentation and sensitivities
- CCAT in comparison to other observatories
- examples of science areas
  - resolve high density, high UV PDR structure
  - ISM structure traced through PDR surfaces
  - Ine surveys in warm, dense cores
  - absorption studies against dust continuum background sources
  - plus many more, covered in other talks ...



## science needs for high spectral resolution: line widths

- ISM line widths
  - ISM clouds:
    - turbulent line widths (suprathermal, but subalfvenic)  $\Delta v \leq 0.1$  km/s (thermal width /cold cloud / no turbulence) to  $\Delta v = 10$  km/s (turbulent width in warm cloud core)
  - star formation cores (gravity dominates)
    - virial line widths (high mass / low mass)  $\Delta v = a$  few km/s to 10 km/s
  - proto-planetary systems
    - Keplerian velocities:  $\Delta v \approx 100$  km/s (inner disk) to  $\Delta v \approx 1$  km/s (Kuiper belt)
- Milky Way & Galaxies: rotation curve
  - Galactic Center / nuclei: Δv ≈ 200 300 km/s
  - galactic disks: edge on / face on: Δv ≈ 20 300 km/s



## science need for high spectral resolution: science goal

## integrated intensities provide

- info on energy balance (heating/cooling)
- abundances of species

often sufficient for first analysis

## resolved line profiles

- allow study of kinematics and dynamics
  - outflows, rotation, accretion/expansion
- are essential to overcome spatial and spectral crowding
  - sources spatially not resolved: kinematic information can separate spatially overlapping components
    - > "clump identification", turbulent structure (spatial structure at all scales)
    - > external galaxies: disk/core
    - > proto-planetary systems: inner/outer disk
  - dense and warm cores: spectral confusion limit ("weed"-lines)
- give best sensitivity for line detection with continuum and/or background noise



## heterodyne vs. direct detection spectroscopy: trade-off

- resolution vs. integration time: fair compromise: 10-30 resolution elements across line profile
- direct detection spectrometers (grating spect. / image slicer)
  - Iarge format 2D-arrays
  - complex image slicing optics
  - example: PACS/HIFI: 16 spectral channels on 5x5 spatial pixels
- heterodyne spectrometer arrays
  - resolution and bandwidth can be covered at affordable cost with DFT spectrometer technology
  - SIS-mixer technology (up to 1.5 THz ?) allows very wide instantaneous bandwidth
  - advanced opto-mechanical designs and waveguide micro-machining technology allow compact configurations
  - advances in LO power and Fourier-optics allow LO-distribution onto many mixers examples:

CHAMP/APEX: 2 frequencies (650, 850 GHz), times 7 pixels SMART/NANTEN2: 2 frequencies (460, 810 GHz) times 8 pixels SuperCam/HHT: single frequency band (345 GHz), 64 pixels





## heterodyne array: example: SOFIA STAR 1.9 THz design

Measured Diffraction Pattern at 492 GHz integrated optics 100 **Fourier-grating LO distribution** Y-Offset [mm] O 0 -100 0.5 -100 0 X-Offset [mm] 100 -0.5 0 Image Rotator Unit 3rd Mirror (active) Diplexer Unit lixers Beams From Polarizer Grids Telescope Mixers **Ball Bearing** Facetted Mirror Output Ports 2nd Mirror (flat) 1st Mirror (active) 5th Mirror (flat) 4th Mirror (flat) 250mm LO Input Port **Rooftop Mirrors** 

•

heterodyne vs. direct detection spectroscopy: trade-off

both instrument technologies:

- similar capability in spatial and spectral multiplexing
- progress towards larger size of 3D cubes coming

thus: single pixel sensitivity is what matters:

note: SIS performance (3 times QL) expected up to at least 1500 GHz

real system: given NEP<sub>coh</sub> and T<sub>rec</sub>  $NEP \Leftrightarrow 2kT_{rec}\sqrt{\Delta v} = 2.8 \times 10^{-17} \,\mathrm{W \, Hz^{-1/2}} T_{rec}/1000 \,\mathrm{K}\sqrt{\Delta v_{MHz}}$ correspondence:  $R_{cross} = \frac{v}{\Delta v_{cross}} = 4 v \left( \frac{k T_{rec}}{NEP_{rec}} \right)^2$ crossover resolution:  $\Delta v_{cross} = \frac{C}{R_{cross}} = \frac{\lambda}{4} \left( \frac{NEP_I}{kT_{roc}} \right)^2$ crossover line width:  $\mathsf{R}_{\mathrm{cross}}$ NEP[W Hz<sup>-1/2</sup>] v<sub>cross</sub>[km/s] T<sub>rec</sub>[K] v [GHz] 2 x 10<sup>-16</sup> 400 820 2500 120

## **CCAT** in comparison to other observatories

size / angular resolution:

- APEX (diameter 12m; rms 16  $\mu$ m; limited day time ops),  $\lambda \le 350 \mu$ m
  - @350 μm: 5.3 times less effective area than CCAT (25m, rms 10 μm)
  - 2 times larger beam size
- ◆ LMT 50m, IRAM 30m ( $\lambda \le 1.3$  mm), MOPRA 22m ( $\lambda = 3$  mm)
  - valuable complementarity at lower frequencies
  - 2 to 3 times larger beam
     [8 times larger for MOPRA, but only southern telescope]
- ALMA (50 x 12m plus compact array)
  - primary beam 2 times larger than CCAT
  - no spatial arrays: slow mosaicking
  - schedule for higher bands will take some time (350 μm)

CCAT with heterodyne arrays (64 – 128 pxs) will be very important pathfinder (& zero spacing for ALMA)

NANTEN2-4m, ASTE-10m, APEX-12m, CCAT-25m provide a complementary range of angular resolution



## **CCAT** in comparison to other observatories

#### CCAT site: Cerro Chajnantor: superb atmospheric conditions





## **CCAT** in comparison to other observatories: atmosphere

comparison between Chajnantor plateau (APEX, ALMA) and Cerro Chajnantor (CCAT):

- median τ@350 µm for May to October
  - ◆ ALMA plateau: т ≈1.5
  - ◆ Cerro Chajnantor: τ ≈1.0
- average source elevation 60°, i.e. Airmass 1.24
- Ruze-factor for η<sub>b</sub>
- signal ~ η<sub>b</sub> exp(-τ/Airmass)
- results in 5.2 faster observing time for same S/N (times beam-size/filling advantage)
- even more at lower elevation angles, higher frequencies



## **High Resolution Spectroscopy with CCAT**

- examples of science areas
  - resolve PDR structure in high density, high UV regions
  - ISM structure of fractal cloud
  - high mass star forming regions: line surveys/mapping
  - absorption studies
- not repeated here:
  - ALMA complement:
    - fill-in of zero spacing
    - spatial multiplexing advantage with array rx
  - Iow-mass star forming cores (→ Jaffe's talk)
  - ◆ nearby galaxies and Galactic Center (→ Goldsmith's talk)
  - ◆ solar system science topics (→ Brogan's talk)
  - astrochemistry (  $\rightarrow$  Lis's talk)



## **CCAT: resolve PDR structure in high UV, high density sources**

- probe relevant spatial scales in PDR layered structure
  - high densities
  - efficient gas heating
  - excitation of mid-J CO lines
  - [CI] 1-0 and 2-1 from narrow transition layer
  - ▶ PDR-layer:  $A_v \approx 2$  to 4 mag
- 3.5" CCAT beam @350 μm resolves A<sub>v</sub>=2.6 mag for density of 10<sup>5</sup> cm<sup>-3</sup> and a source at 500 pc (Orion)

lines:

```
<sup>12</sup>CO, <sup>13</sup>CO mid-J and high-J
```

[CI] 1-0 and 2-1

[NII] 205 µm

CO⁺, HDO, CN, CS, ...



## **CCAT: ISM structure traced by PDR emission from fractal clouds**

- ISM clouds show a turbulent, fractal structure down to well below sub-solar mass fragments
  - turbulent support controls SF-efficiency
  - may determine IMF
  - affects feed-back/self-regulation of star-formation
- UV radiation from young stars creates photon-dominated regions on cloud surfaces
- characteristic PDR-emission includes [CII]- and [CI]- fine-structure lines, CO and <sup>13</sup>CO rotational lines plus FIR continuum

CCAT: probe small spatial scales in high excitation lines (in combination with ALMA)





reproduces non-Gaussian wings on difference-pdfs at large lags



## observations of structural characteristics: clump decomposition

#### clump decomposition methods

- Gaussian decomposition (Stutzki & Güsten 1988; Kramer et al. 1998)
- clump-find-algorithm (Williams et al. 1994)

yield

- clump statistics: mass-spectra, size-spectra, shape/orientation
- correlations between clump properties: e.g. mass-size relation
- connection to power spectrum/ fBm
  - mass-size-relation
  - mass-spectrum
  - randomly positioned clumps
  - $\rightarrow$  fBm intensity map
- $p(k) \propto k^{-\beta} \quad \text{with} \quad \beta = \gamma (3 \alpha)$

 $M \propto r^{\gamma}$ 

 $dN/dM \propto M^{-1}$ 

velocity structure helps to tell individual clumps apart



## fractal clump distribution: properties

power law mass spectrum power law mass size relation

 $dN/dM \propto M^{-\alpha}, \alpha = 1.8$  $M \propto r^{-\gamma}, \gamma = 2.3$ 

gives

- an ever increasing number of smaller and smaller clumps

with (normalized to most massive clump)

- increasing density:
- almost constant column density:
- a cumul. mass function
- a cumul. volume function
- a cumul. area function

 $\rho/\rho_{1} = (M/M_{1})^{(\gamma-3)/\gamma} = (M/M_{1})^{-0.304}$   $N/N_{1} = (M/M_{1})^{(\gamma-2)/\gamma} = (M/M_{1})^{0.13}$   $M(\mu < m)/M_{tot} = (m/M_{1})^{(2-\alpha)} = (m/M_{1})^{0.2}$   $V(\mu < m)/V_{tot} = (m/M_{1})^{\frac{3}{\gamma} - \alpha + 1} = (m/M_{1})^{0.504}$   $A(\mu < m)/A_{tot} = (m/M_{1})^{\frac{2}{\gamma} - \alpha + 1} = (m/M_{1})^{0.07}$ 





## example: clumps with a density enhancements > 10 times largest clump

- V(M<m)/Vt) M(M<m)/Mt A(M<m)/At 0.75 0.5 0.25 -3.0 -2.0 log(m) log(n) log(N) 1. 0.5 0.0 -0.5 -4.0 -3.0 -2.0 -1.0 log(m)
- occupy 2% of the volume
- include 21% of the mass
- provide 58% of the projected area



## fractal clump distribution: examples

- fBm distribution: random positioning of clumps
- different volumes: volume filling factor  $\eta_V$
- (note: turbulence: high density, small clumps should be inside low density regions  $\rightarrow$  spatial correlation in clump distribution)



η<sub>V</sub>≈0.1

## high/medium/low density





η<sub>V</sub>≈1.0

## clumpy cloud PDR model: PDR emission of fractal structure





#### given:

- ensemble of spherical clumps (fractal structure)
- power law mass distribution  $dN/dM = A M^{-\alpha}$
- power law mass-size relation M = B r<sup>-γ</sup>
- with
- volume average mass density
- clump ensemble volume filling factor
- UV intensity
- metallicity
- calculate
- volume emissivity in PDR lines & continuum
- fold with source distribution (mass density, UV intensity, filling factor, ...) result
- observable line intensities



variation of clump density and line characteristics (critical density, temperature)

give distinct variations in the clump intrinsic brightnesses emissivity of clump ensemble







J. Stutzki, KOSMA May 13th/14<sup>th</sup> 2008 Boulder: Spectroscopy with CCAT

## Large scale emission of the Milky Way / longitudinal distribution



- simple cylindrically symmetrical MW model (fixed height, radial variation of physical parameters)
- mass surface density → mass volume density (Clemens et al. 1985, Bronfman et al. 2000)
- mean molecular cloud intrinsic volume density (Wolfire et al. 2003)
- UV field from distribution of OB associations (McKee & Williams, 1997) plus typical average distance OB cluster --molecular cloud
- α, γ from fractal characteristics (Heithausen et al. 1998)

Page 22



![](_page_22_Picture_1.jpeg)

Page 23

## **ISM structure:**

above was for large scale MW (G₀≈150, n≈10<sup>3.5</sup> cm<sup>-2</sup>), but holds equivalenty for denser/higher-UV regions

different lines trace different densities, and hence spatial scales

- [CII], [CI] 1-0: large clumps
- [CI] 2-1, mid-J CO: small scale structure

What determines the smallest clumps size? (UV evaporation?)

- CCAT and ALMA are ideal complement example: mid-J CO, [CI] in 609 and 350 µm window
- ALMA interferometry in a series of individual pointings
  - directly measures spatial power spectrum index
  - covers angular scales: 10" down to < 0.1"</p>
- CCAT array-receiver (64 pxs)
  - individual pointings provide zero-spacing for ALMA observations
  - OTF maps cover angular scales from >100" to 5"

Page 24

### CCAT: line surveys of warm, dense star forming cores

![](_page_24_Figure_1.jpeg)

examples in the following from

Beuther et al. 2005 345 GHz SMA "line survey"

2 GHz each from lsb, usb

145 lines from
13 species
6 isotopologues
5 vibrationally excited states

![](_page_24_Picture_6.jpeg)

![](_page_25_Figure_0.jpeg)

# CCAT beam 350 µm

ALMA primary beam 350 µm

complex spatial distribution:

#### ALMA

single pointings with high angular resolution within primary beam

CCAT array rx (64 pxs) efficient mapping over 30x30" array footprint

Important:

large instantaneous bandwidth of > 8 GHz, sideband separation

![](_page_25_Picture_9.jpeg)

## **CCAT: Absorption studies against thermal dust emission**

- use dust continuum at 450, 350 and 200 μm
- reaches from a few K up to ≈10 K in many massive star forming cores in inner galaxy
- even a few outer galaxy sources with close to 1 K dust continuum in 15" beam
- continuum from background star-burst galaxies in Galactic plane (?)  $\Delta T (1\sigma, 1hr)=40$  mK with T<sub>rec</sub>=240 K (810 GHz) in  $\Delta v=1$  km/s
- ground state lines
- [CI] 492 GHz
- HCI 626 GHz
- H<sub>2</sub>O<sub>2</sub> 670 GHz
- DF 651 GHz
- CH<sup>+</sup> 835 GHz
- HNCO 923 GHz
- H<sub>2</sub>D+ 1370 GHz

 $\rightarrow$  Lis's talk

![](_page_26_Figure_14.jpeg)

 $\alpha_{2000}$ 

![](_page_26_Picture_15.jpeg)

## Summary: CCAT high resolution spectroscopy

- coherent vs. incoherent detector/instrument technology: crossover resolution matches border between integrated/resolved line profiles
- better site and better surface of CCAT give a speed advantage of typically >5 @ 350 µm for CCAT vs. e.g. APEX (times the additional point-source advantage of the larger collecting area, day-time observing, wind protection due to dome)
- CCAT 25m covers a completely unexplored regime of angular resolution in perfect complement to ALMA
- many exciting and unique science areas
- science calls for a multi-color heterodyne array receiver
  - modular/interchangeable detector arrays to cover 600, 450, 350 and 200 µm
  - flexible IF processing/DFT spectrometers:
    - 4 GHz each for spatial multiplexed observations
    - very large instantaneous bandwidth for spectral surveys
  - no fundamental technology limits, but demanding complexity

![](_page_27_Picture_11.jpeg)