Spectral Imaging: HARP and Beyond

Gary Fuller

Jodrell Bank Centre for Astrophysics

University of Manchester

Outline

• HARP • JCMT Surveys • JCMT SLS Possible future directions with CCAT

Retooling the JCMT

- SCUBA-2
 - 850/450 μm camera
 - Arrived at JCMT April 2008.
 - Installation starting
 - Commissioning starts June
- HARP
 - 345 GHz heterodyne camera
 - First light 11 Dec 2005
- ACSIS
 - autocorrelation spectrometer

HARP

- 16-pixel (4x4) imaging array: 30 arcsec beam spacing, 15 arcsec beam
- 2 arcmin x 2 arcmin field of view, undersampled by factor of 4 or 5 wrt Nyquist
- 325-375GHz coverage
- Single sideband tuned (via interferometer)
- K-mirror for field rotation
- Tsys: 10010100110100110

290		340	340
340	330	310	270
282	340	250	260
	300	290	

- Mean Tsys 303+/-33 K (345GHz)
 - 100101000101001101 010110011010010101 0101100101001100001

ACSIS backend

16 IF inputs (actually 32, paired up)

- Nominal bandwidth per channel: 2GHz, in 2x1GHz hybrid configuration
 - Actual BW reduced by 10-20% due to filter roll off: 1.6GHz at least
- Up to 4 spectral windows per IF
 - Highest resol. 0.027 km/s, covering 230 km/s
 - Lowest: 0.87 km/s, 1700 km/s
- Minimum sample time: 50ms
 - Allows fast mapping
- Maximum output map size: 16Gbytes
- Total disc space: 4Tbytes
- Full data reduction and display pipeline
- Programmable data reduction

Nominal Bandwidth	Resolution
250MHz	30kHz
500MHz	61kHz
1GHz	500kHz
2GHz	1MHz

Mapping Modes

- Raster position switch (on the fly PSSW)
 - For large maps, typically of bright objects
 - Telescope is continuously tracked
 - maximum map size: approx 2x2 degrees, Nyquist-sampled
- Jiggle chop (beam-switch)
 - For deep maps of compact objects
 - Secondary mirror fills in missing samples (4x4 pointings, or 5x5)
 - Creates map 120 arcsec square
 - K-mirror for field rotation keeps pixels in fixed grid positions
- Jiggle frequency-switch
 - As above, but uses FSWITCH of >200MHz
 - frequency switching is slower than jiggle rate
- Grid position switch (Grid PSSW)
 - Used for deep observations of small objects

Wide Field Image

- Orion
- CO J=3-2
- ~160,000 spectra
- 30x80 arcmin

Orion: Field One -4:50 -5:00 10 Declination 20 30 40 50 36:00 305:35:00 30 34:00 **Right ascension**

JCMT Legacy Surveys

The SCUBA-2 Cosmology Legacy Survey (CLS)

- The SCUBA-2 `All Sky' Survey (SASSy)
- The Debris Disk Survey (DDS)
- The JCMT Galactic Plane Survey (JPS)
- The Nearby Galaxies Survey (NGS)
- The Gould Belt Survey (GBS)
- The Spectral Legacy Survey (SLS)

50 % of telescope time to these surveys

100101000101001101 010110011010010101 010110010100110001

The Nearby Galaxies Survey

PI: C. Wilson

 Image 155 galaxies withing 25 Mpc with SCUBA-2 & in CO J=3-2

NGC4321 CO 3-2 + DSS

- SCUBA-2 & HARP imaging of clouds within 0.5kpc of the Sun
- ~370 sq. deg. in 2yr with SCUBA-2
 - 10mJy/3mJy @ 850um, 0.08M_10K
- HARP cloud (5'x5') and core (2'x2') maps in ¹²CO and ¹³CO/C¹⁸O 3-2
- ~30 clouds maps at each frequency in 2

yr

Ward-Thompson et al. 2007, PASP,119,855

Serpens CO J=3-2

CMT Gould Belt

Legacy Survey

Exploring The Spectral Domain: JCMT Spectral Legacy Survey

- Only spectral lines probe
 - kinematics
 - physics
 - chemistry
 - evolution hot core clocks, depletion
- Poor understanding of molecular inventory and its evolution
 - Spectral survey
 - Complete census of species
 - Comparison of species
 - Trace range of excitation
 - New/unexpected species
 - Define continuum
 - Typical spectrum of different types of sources ?
 - Typical spectrum of kinds of environments ?

The 345 GHz Window

GHz

Lovas (2004) • 866 transitions • 82 species

Important spectral band: ALMA DRSP: >30% of observing time in this band

Two Atom Species	Three Atom Species	Four Atom Species
CO ¹³ CO C ¹⁷ O C ¹⁸ O	OCS OC ³⁴ S O ¹³ CS	CCCS
CS C ³⁴ S C ³³ S	HNC HN ¹³ C H ¹⁵ NC	H ₂ CS
CN CO ⁺ NO NS	HCO+ H ¹³ CO+ HC ¹⁸ O+ DCO ⁺	HDCO
SiO ²⁹ SiO ³⁰ SiO	HCN H ¹³ CN HC ¹⁵ N DCN	HNCO
SIS SI33S SI34S 29SIS 30SIS	H2O HDO HCO+ SiC ₂	H3O+
SO 33SO S18O 34SO	HDS C2H HNO HCS+	NH2D NHD2
SO ⁺ SO2 ³⁴ SO2	$HCO H_2D^+$	H ₂ CO H ₂ C ¹⁸ O H ₂ ¹³ CO D ₂ CO
	-	
Five Atom Species	Six or More A	tom Species
HCCCN HCC ¹³ CN HC ¹³ CCN H ¹³ CCCN	CH2CHCN	CH3OH ¹³ CH3OH
HCOOH HCOOD	CH3CCH	NH2CHO
CH2CO NH2CN	CH3CH2CN CH3OCHO	t-CH3CH2OH
CH2NH c-C3H2	CH3CN ¹³ CH3CN	CH3OCH3

But poorly explored...

Source	Frequency Range	Noise	Reference
	(GHz)	(K)	
High N	Mass Sources		
Orion KL	325 - 360	0.15	Schilke et al. 1997, Jewell et al. 1996
G34.3+0.15	330 - 365	0.05	Macdonald et al. 1996, Thompson et al. 1999
G5.89-0.39	330 - 360	0.06	Thompson & Macdonald 1999
W3 IRS5, IRS4, OH	334 - 365	0.03	Helmich & van Dishoeck 1997
Sgr B2	330 - 355	0.06	Sutton et al. 1991
IRAS 23385-6053	330 - 360	0.03	Thompson & Macdonald 2003
	(incomplete)		
Low M	Mass Sources		
IRAS 16293-2422	330 - 365	0.018	Caux et al. in progress

010110011010010101

All current surveys are at single positions BUT none of the sources are isolated point sources

- 1001001001001001001
- \rightarrow Need imaging to probe structure
- 100101001101001111

Multiple physical environments along lines of sight

JCMT SLS: An imaging spectral Survey PI: G. Fuller

- Goals
 - understand the molecular inventory and its evolution
 - probe a range of environments
- Five target sources
 - Chosen to span range of star forming environments and evolutionary stages

SLS: The parameters

• Five sources

- W4910011010010101
- IRAS20126+4104
- AFGL2591
- NGC1333 IRAS4
- Orion Bar

- Noise levels (in 2.5 km/s channels)
 - 25mK
 - Low mass source: 9mK
- Allocation
 - 187 Hours (in grade 4 weather)
- Coverage
 - 330 GHz 363 GHz*
 - Single fully sampled footprint (2'x2')

A Galactic Starburst: W49

- Distant: 11.4 kpc
- Luminous: 10⁷ L_o

Cluster of UCHII regions embedded in 10⁵ M₂ cloud

(De Pree et al. 2003)

Stepping stone to extragalactic star formation regions

An Intermediate Mass Protostar: IRAS20126+4104

2µm image (Sridharan, Williams & Fuller 2005)

010110010100110101

- Embedded young $10^4 L_{\odot}$ source at 1.7 kpc
- 5-7 M_{\odot} central source in 200 M_{\odot} core
- Keplerian disk, 5000 AU in radius CH₃CN, OH masers
- Outflow CH₃OH, SiO, H₂O masers precessing?
- Target for HIFI on Herschel

A massive protostar: AFGL 2591

- 2x10⁴ Lo at 1 kpc
- Infrared bright
- Very well studied
- Rich molecular spectrum
- Source structure well characterized (van der Tak et al 1999)

Low Mass Protostar: NGC1333 IRAS4 (Blake et al. 1995)

- 30" binary resolved and imaged
- Class 0 sources infall, outflow, rotation
- Differences between components
- Depletion, high deuterium fractionation
- (L1157, L1544)

Photon Dominated Region : Orion Bar

- Dense gas exposed to 10⁴ G
- Dense clumps ~10⁶ cm⁻³
- Inter-clump ~10⁴ cm⁻³
- No (internal) star formation

(Lis & Schilke 2003)

SLS: The Parameters & Status

- Five Sources
- Noise levels (binned to 2.5 km/s channels)
 - 25mK
 - Low mass source: 9mK
- Allocation
 - 187 Hours (in grade 4 weather)
- Coverage
 - 330 GHz 363 GHz
 - Single footprint (2'x2')

- 2 GHz spectra (0.87 km/s channels)
- Spatial & spectral redundancy
- Started Nov 2007
- About 30 hours observed so far
- Parallel high frequency extension 363-375 GHz

http://www.jb.man.ac.uk/research /sls Plume et al. 2007, PASP, 119,10

A Demonstration Case: G34.26+0.15

- Classical hot core: ~0.01pc, 300K, 10⁷ cm⁻³, 10²⁴ cm⁻²
- Single point survey by Macdonald et al. (1996)
 - 35 species, 19 isotopologues, 70 U lines
- Multipoint chemical model by Millar et al. (1997)

aiddia Limb

45.8

46.0°

RIGHT ASCENSION (1950)

0

45.4

45.6

scension (B1950)

• Survey of envelope by Thompson et al. (1999)

Radio continuum

.

01 11 20

16

14

12

10

Declination (B1950)

8″

18^h50^m

Spatial Information

Species	Peak	Size (")
H ₂ CS	(0,+7.5")	1007.8
CH ₃ OH	(0,+7.5")	1117.3
H ¹³ CN	(0,+7.5")	8.6
$H^{13}CO^{+}$ 10	$(0,0)^{1010}_{1010}$	¹⁰¹⁰ 11
NS 10	(0,0)	8.3
U346.2186	0110(0,0)011	5.7
H ₂ CO	(0,0)	10.4

010110011010010010

Extended Emission

 011010010100110001

 101101001010001000

 100101001010001001

 01011001010001001

 100101001101001100

 1010101010001001

 1010101001001001

010110011010010101 010110010100110001

$\begin{array}{c} AFGL2591 \\ N_{2}H^{+} J=4-3 \end{array}$

HNC J=4-3

0

Integrated

Red & Blue wings

Science with the SLS

- Gas-star interaction
 Thermal & Chemical
- Tracers of the outflow
- Hot core chemistry
- Evolution of envelope material infall and dispersion
- Intercomparison of sources

Wide Field^{*} Imaging Science Beyond HARP

- Distributed Sources
 - Clusters
- Extended sources
 - 011010010100110101
 - Clouds
 - Outflows
 - Nearby Galaxies
- (Large samples)

* - compared with ALMA

Freq.	Primary Beam	Pointings for
(GHz)	FWMH	1'x1'
115	52.5	4
230	26.25	16
345	17.5	36
460	13.13	81
690	8.75	169
850	7.1	289

144 pointings to cover HARP fov

Clusters Outflows, PDRs CO, CN lines Energetics, Census Central sources High density tracers

• Census, evolutionary stage

(Beuther et al. 2003)

19^h43^m10^s R.A. [J2000.0]

Clusters

Not just high mass protostars

• Class I solar mass objects

Clouds

Origin and dispersal of dense gas

Small cores but extended structure maybe key to their origin.

Kinematics vital

Densest gas cold, but outer edges may be much warmer extended PDRs

Clouds

Interfaces between hot and cold gas

M17

00101000101001001 10110011010010101 10110010100110101 00101001101001110

Chandra diffuse x-ray

Spitzer PAH emission

Townslev

Outflows

010110010100110001

MMB LMC Survey

6:00

HI

8 microns

Right ascension

30

Surveyed area: 56 deg²

5:00

4:30

100101000101001101 010110011010010101 010110010100110001 (Green et al 2008, MNRAS)

CCAT Opportunities

- Fast mapping for >few tens of pixels
 - Goal >100 pixels 10x10 array
- IF bandwidth > 8 GHz
 - 2 GHz ¹³CO & C¹⁸O; 11 GHz CO & CN 6-5
 - Spectral resolution 0.1 km/s few km/s
- Choice of bands
 - 345 GHz
 - Peak CO emission for 20 K clouds
 - 490 GHz
 - CI line; strongest CO line in GC.
 - 650 GHz
 - All CO isotopologues
 - 850 GHz
 - 1001010011010101010

 010110011010010010

 10010100010100100

 100101001010001000

 010110010100100001

 10010100110001010

 10010100100010100

541 features, 929 transitions, 29 species

CCAT Field of View

.01010110101001110 11010010100110001

CCAT Opportunity

- >100 pixels
- IF bandwidth > 8 GHz
- Spectral resolution 0.1 few km/s
- Choice of bands
 - 230 GHz
 - 345 GHz
 - 490 GHz
 - 650 GHz
 - 850 GHz

Hotter, denser gas Larger field of view Physically larger

Wide Field Imaging Science

'Big' picture (spatial, spectral & statistical) view of the formation and evolution of cores & clouds

¹⁰⁰¹⁰¹⁰⁰¹¹⁰¹⁰⁰¹⁰¹⁰