

Jason Glenn University of Colorado

CCAT Workshop Spectroscopy with CCAT: Science and Instrumentation Opportunities Boulder, CO May 13 &14, 2008

Brief Background

The Antenna Galaxies

Visible (HST) Near-Infrared (Spitzer) Submillimeter (CSO)

The interstellar medium in galaxies obscures star formation and supermassive black hole formation, intercepting optical & UV radiation and reemitting it in the infrared and submillimeter.

For a realistic model of galaxy formation, we must understand the galaxies that give rise to the (enormous) **Cosmic Far-Infrared Background Radiation**

COBE (1996): The Cosmic FIR background nearly equals the extragalactic optical/UV background \rightarrow dust-obscured galaxy (star) formation

CCAT Will Become Overwhelmed Quickly with Its Own New Galaxy & Protostar Catalogs

Detection rates of distance submillimeteremitting galaxies (A. Blain)

CCAT 32x32 detector array 200 µm 350 µm 450 µm 620 µm 750 µm 850 µm

Why Do We Need *Multi-Object* Spectroscopic Capability?

→ Speed of follow-up & galaxy clustering

Submillimeter galaxies in the vicinity of z = 2.38 Ly α clouds J2143-4423 (Galaxy "protocluster"?) Circles: probable detections (22) Squares: possible detections (10)

Photometric redshifts indicate seven or more 5 – 20 x 10¹² L_{solar} galaxies with 2.0 < z < 2.8 \Rightarrow spectroscopic redshifts are needed.

Beelen et al., astro-ph/0803.1615

Why Do We Need *Multi-Object* Spectroscopic Capability?

→ Sites of star formation are clustered

NGC1333, Bolocam Enoch et al. 2006

Bolocam 2 $^{\circ} \times 2^{\circ}$ 1.1 mm continuum

Bally, Glenn, Aguirre, Drosback, Ginsburg, + UTexas & UBC

More from Crystal Brogan & Chris Walker on heterodyne-receiver array mapping

CCAT Atmospheric Transmission Windows

Simple Observing Speed Comparison

Assuming

Identical atmospheric transmission (conservative for CCAT)
Identical telescope surface RMSs (conservative for CCAT)
Identical spectrometer sensitivities (very conservative for CCAT)
Spectral resolution of R ~1,000 for line survey & redshift measurement

⇒With only one beam (i.e., one object, one fiber), CCAT do quick line surveys & redshift measurements with the same speed as ALMA

⇒With a handful of fibers & realistic sensitivities, CCAT would be >10x faster than ALMA in the 350 μ m window

 $\frac{SPEED_{CCAT}}{SPEED_{ALMA}} = \frac{N_{CCATBeams}}{N_{ALMATelescopes}} \left(\frac{D_{CCAT}}{D_{ALMA}}\right)^2 N_{ALMATunings}$

Set:

 $\frac{SPEED_{cCAT}}{SPEED_{ALMA}} = 1$ Solve for NccatBeams NALMATELESCOPES = 50 Dccat = 25m DALMA = 12m NALMATUNINGS = 10

 $N_{CCATBeams} \cong 1!!$

CCAT will be capable of (and required for) spectroscopic follow-up of its own continuum survey catalogs

CCAT Preview: Z-Spec Observations

First broadband mm-wave spectrum of a high-z galaxy

Caltech—Bret Naylor, Jonas **Zmuidzinas** Cardiff—Peter Ade CEA (France)—Lionel Duband Colorado—James Aguirre, More from Randol Aikin, Lieko Earle, Jason Glenn, Phil Maloney, Matt Corey Wood JPL—Jamie Bock, Matt **Bradford** Bradford, Hien Nguyen and Lieko ISAS (Japan)—Hanae, Earle Inami, Hideo Matsuhara

Multi-Object Spectrometer: Grating & Detectors

WaFIRS

Rowland grating

-Compact

-Stackable

•Demonstrated in Z-Spec

•R ~ 1,000 feasible in submillimeter
•FSR matches atmospheric windows

TESs, MKIDs: Arrays of tens of thousands of detectors

SCUBA-2 TES Subarray 1280 pixels (10,240 total)

592 x 4-color array camera (Colorado/Caltech/JPL) More from James Schlaerth

Multi-Object Spectrometer: Flexible Waveguides

U. Colo. – Jason Glenn, Al Gasiewski, Vladimir Leuski

Colo. School of Mines – John Scales, Brian Zadler

NIST – William Duncan

Broadband MOS Spectrometer for CCAT

- 1. CCAT will be overwhelmed quickly with its own source catalogs.
- 2. ALMA will be highly oversubscribed.
- 3. Thus, CCAT will have to provide its own spectroscopic survey follow-up (with detailed ALMA spectroscopy to follow).
- 4. Flexible submillimeter waveguides provide a natural technology for a MOS.