Future extragalactic surveys

Andrew Blain
Caltech
10th January 2008

AAS Austin

Future extragalactic surveys

Andrew Blain
Caltech
10th January 2008

AAS Austin

Contents

- Dust reprocesses about 50% of the energy released over the Universe's history
 - Less now than at most intense epoch z~2
 - Both star formation and AGN activity are responsible
 - Accompanied by molecular (and fine-structure atomic) gas emission
- Existing surveys find dust emission, but are challenging to follow up in detail at other wavelengths - HST - Spitzer - Chandra - VLA - 8-10-m spectroscopy
- ALMA will be a tremendously powerful & transformational
 - Unique capability to reach micro-Jy (sub-0.1-L* galaxy) sensitivity
 - Resolution down to of order 10 m-arcsec (~100 pc)
 - Sensitivity of order 1mJy in 1s
 - ALMA makes a day to minute integration time transformation
- BUT... Field of view is the antenna primary beam ~10-30 arcsec
 - Surveying is slow compared with sensitivity
 - Efficient imaging and imaging spectroscopy only of known targets
 - SCUBA2/Herschel/Planck make a start, but depth/area not to both L*/representative

Global luminosity evolution

WMAP cosmology

What drives z~2 peak? What happens beyond reionization?

Points

- Blue: optical / UV
- Red: IR and dust corrected
- Black: SDSS fossil record
- Uncertainty remains

Lines:

- results from combined submm/far-IR information
- Note high-z decline certain
- Less rapid than for QSOs

Caveats

- AGN power (modest?)
- High-z / high-L IMF change
- Submm-selected sample probes most intense epoch of galaxy evolution directly
 - Trace to L* at z~2 (0.1mJy)
 - Cover Gpc³

Observed far-IR/submm SEDs

- Mix of different sources traces out some of the range of SEDs properties
 - Milky Way &
 APM08279 are
 extremes
- Blue/violet determines SED peak, thus luminosity
- ALMA can do this, but only source by source

Normalized where sizeable sample of `submm galaxies' are selected. Redshifts z~2-3 from Chapman et al.

Continuum detections & SEDs

- Sifting catalogs needs some color / optical / radio information
 - Prioritize for follow-up, reveal pre-ionization sources, spot low-z galaxies

ALMA:

- ~10% of ALMA continuum detections have a CO line in an 8-GHz band
- Measure continuum slope in band same information as a color?
 - Surprisingly tough
 - Even without line pollution & bandpass calibration uncertainties (ZSPEC)
 - Spectral index measurement to ±0.2 requires S/N ~ 1000 in continuum with 8-GHz-wide band. Even 50GHz band requires S/N ~ 100 for ±0.25 in spectral index
- Need to measure colors between ALMA or CCAT bands
 - Need to cover turn over in SED near 3-400 microns
 - T to ±5% requires S/N ~ 100 in each band (even at 350/670GHz)
 - CCAT's site & size favor speedy acquisition of quality colors, during mainstream survey

FIR & optical luminosity function

- Dramatic evolution from redshift 0 to 2.5
 - Optical surveys tie in
 - Current submm data not linked directly to them
- Key goal is to understand the overall LF from z~0.5 to 5
- Going deeper than needs
 - Less spatial confusion
 - Higher frequency(ies)
 - CCAT at 350/450 microns
- L* galaxies ~0.01 Mpc⁻³
 - For 1<z<3 1 deg² covers
 2.3x10⁷ Mpc³

Chapman et al. (2005)

Large scale structure

- N-body simulations track mass well (greyscale)
- Red labelled galaxies (ellipticals) form earlier, and are most clustered
- Relating submm galaxies is more difficult, and not so far done convincingly

Prediction difficulties:

Strong feedback

Rare well-studied examples

Uncertain astrophysics

1 Mpc ~ 100 arcsec at high z 100 Mpc ~ 3 deg

SMGs trace 3D large-scale structure (LSS) peaks?

- Largest number of SMGs are in and around the HDF field
 - HDF & GOODS frames show where morphology information is available
- Circles: all known radio-submm galaxies
 - Small empty: no z attempt
 - Large empty: no z found
 - Black filled: z found
 - Colored filled: 'associations' all z's within 1200 km/s
- Green points (z=1.99) match optical galaxy z spike (Steidel et al)
- Only the spectroscopic redshifts from LRIS reveal structure
- Many more 'clusters' or associations expected than expected from our knowledge of SMG N(z)
- Narrow-band searches under way

Other new & (near-) future tools

See also Spitzer & Akari

*-shown
CARMA*, APEX,
SOFIA*, SCUBA-II,
LMT*, Herschel*,
Planck*, WISE*,
ALMA*, SPICA,
SAFIR,
SPECS/SPIRIT/FIRI

CCAT: Speed vs other instruments

- ALMA, SCUBA-2, 50-m LMT, Herschel
- Assume CCAT cameras
 - 1100, 870, 740, 620, 450, 350, 200 microns
 - SWCAM 32000 pixels
 - LWCAM 16000 pixels
- Fastest depth ~few mJy at 1100 microns (current SMGs)
 - FOV 25 arcmin²
 - 1mJy 5 σ in 30s
 - 1/2-sky survey in 2.5 yr
 - 10⁸ galaxies
- Confusion limited (350micron)
 - 0.05mJy 1 σ in 600s (10¹¹ L_o)
 - 2 deg² in 40hr
 - 10⁶ galaxies over few yr
- Huge galaxy surveys
- CMB foreground maps

Making surveys and diagnoses

- Wide-field surveys, beyond current 10's deg²
 - Find rarest, most extreme objects
 - Mid-IR all-sky mission WISE, submm CCAT
 - Links between environment, and luminosity function (LF) at all relevant wavelengths
 - Herschel/Planck find very top end of LF
- Resolved imaging of individual sources, and extremely deep surveys still require ALMA
 - Internal dynamics
 - Find ultrafaint galactic building blocks after first generation of stars generate metals (ices?) and before re-ionization

Summary

- Useful colors require submm measurements
- Context requires multicolor 10-deg² fields
- Completeness requires sub-mJy submm sensitivity
- ALMA crucial for very deep (spectral) imaging to understand astrophysics of dust-enshrouded galaxies
 - Revealing large-scale structure, measuring colors and compiling large samples is not its strength, because of speed
 - A single CO line and one continuum color is enough to give a good guess to redshift & luminosity

Overcoming confusion

- Current missions in black
 - Spitzer is +
- Green bar is just a 500m baseline ALMA
- Purple bar is ground-based 25m CCAT
- Red bar is 10-m SAFIR
 - Confusion from galaxies not met for many minutes or hours
 - At shortest wavelengths very deep observations are possible
- Factor 2 increase in resolution over existing facilities is very powerful
 - Submm confusion dives at 5"

Redshift distribution N(z) for radiopinpointed SMGs

Chapman et al. (2003; 2005)

- Red histogram: Chapman et al
- Lines: expected submm & radio N(z)'s from Chapman's model
 - Consistent with early submmderived Madau plots but result is now MUCH more robust
 - Magenta shade at z~1.5 is 'spectroscopic desert': rest-UV & rest-optical lines both hard to observe
 - Blue shading at highest z is incompleteness due to radio nondetection. Likely modest, but uncertain
- Now 73 redshifts (ApJ 2005)
 - Median z=2.4 and spread in redshift z~0.65 is good description

Resolved 'example': the Antennae

- Interaction long known, but great IRAS luminosity unexpected
 - ~90% energy escapes at far-IR wavelengths
- Resolved images important
 - Relevant scales ~1" at high redshift

CSO/SHARC-2 Dowell et al. 350µm

ISOCAM 15µm

Spitzer IRAC mid-IR

HST WFPC2
Multiband optical

Example IDed submm galaxy

Ivison et al (2000, 2001); Swinbank et al. (2004)

- Relatively bright, complex example
- May not see most important region in the optical Spitzer IRAC can highlight interesting locations
- J2 is a Lyman-break galaxy (Adelberger & Steidel 2000)
- J1 is a cluster member post-starburst galaxy (Tecza et al. 2004)
 - Hα/continuum ratio imply this does not add significant magnification
 - J1n is an Extremely Red Object (ERO; Ivison 2001)
 - Remains red in deeper Keck-NIRC data
 - Powerful H α emission
- Both J1n & J2 are at z = 2.55 radio and mm appear to be from J1n

Local example of best results

- IRAM PdB CO in NGC 6946 (Schinner et al. 2006)
- Spatial structure & gas dynamics
- ALMA can probe at z~3
 - Resolution
 - Primary beam
- Note synergy with eVLA/eMERLIN
 - Ultimately SKA

Red: CO; green: Hα; blue: continuum

CO(2-1) contours HST: Pa α & I band

Best achievable now - distant

- Only marginal spatial resolution possible
- Spectral bandwidth narrow
- Situation will improve dramatically with ALMA, a step in imaging quality tested at CARMA & IRAM

Genzel et al PdB

8'x8' field PdB HCO+(5-4) Garica-Burillo et al (2006)

Astrophysics of examples

- First, redshifts necessary
 - In principle from CO, but in practice optical
- Then, CO/near-IR/X-ray targeting and stacking is possible
 - Also stellar mass from Spitzer IRAC colors
 - Also morphology, mergers, multiple/multicolour components
- X-ray probes of Compton-thin AGN
- \blacksquare CO / H α images start to probe dynamics
- When investigated in detail, all get messy

X-ray reveals AGN in 2-Ms HDF

19 galaxies in GOODS-N field Redshifts allow stacking in soft & hard classes

Excellent fit to X-ray SED models - Fe emission & H absorption

- 2-Ms exposure reaches 1% of typical QSO X-ray flux at z~2.5
- X-ray flux of SMGs implies significant AGN power

The mid-IR window

 Emission from Polycyclic Aromatic Hydrocarbons (PAHs) implies SF activity (?)

Weak/Absent PAHs imply AGN

- Continuum dilution
- PAH destruction (Voit 1992)

Mid-IR spectroscopy (ending with Spitzer in ~May 08) offers unique chance to separate the mechanisms

AGN Contribution

M82 + faint power-law continuum (from weak AGN?) ~ 10% AGN contribution, as in X-ray

Menendez-Delmestre et al. (07, 08)

Near-IR spectroscopy (NIRSPEC, VLT and narrow-band at IRTF & UKIRT)

- ~25 targeted
 - Optical redshifts allow near-IR spectroscopy in favorable sky windows
- Hα/[NII] ratios and
 Hα line widths
 provide hints at presence of AGN
- Composite spectrum of examples with narrow (<400km/s) Hα show underlying broad line; narrow component gives dynamical mass - few 10¹¹ M_o
- Adding [OII]/[OIII] ratios could bring in metallicity, but very time consuming!
- Aim to target brightest examples with OSIRIS to measure detailed dynamics

Swinbank et al. 2004

OSIRIS

OH-Suppressing InfraRed Imaging Spectrograph

SMM J163650, z=2.38

- FOV = 2.4 x 3.2", R~3400 (0.05" pixel scale)
- AO spatial resolution
 - Probe 2D-resolved internal dynamics
 - Separate broad/narrow, compact/extended emission

First OSIRIS results on select sample of SMGs shows compact AGN spatially distinct from stellar emission.

OSIRIS

OH-Suppressing InfraRed Imaging Spectrograph

 $H\alpha_{\text{fwhm}}$ ~ 500 km/s

- FOV = 2.4 x 3.2", R~3400 (0.05" pixel scale)
- AO spatial resolution
 - Probe 2D-resolved internal dynamics
 - Separate broad/narrow, compact/extended emission

First OSIRIS results on select sample of SMGs shows compact AGN spatially distinct from stellar emission.

SED Variation: Composite IR SEDs of SMGs

Use all mid-IR to radio data for Chapman sample & compare to "cold" and "warm" ULIRG templates.

Strong redshift / luminosity dependence of composite SEDs:

- Low-z SMGs: less luminous than Arp 220, cold (like low-z disks?)
- z > 1 SMGs: brighter in mid, far-IR than Arp 220; SEDs peak longer
- Large scatter in mid-IR and radio points in z > 2 galaxies
 - Variation in mid-IR properties?
 - Luminosity dependence?

SMGs with z's: FIR-radio assumed

Blain, Barnard & Chapman 2003 & Chapman et al. 2003

Squares: low-z, Dunne et al.

Empty circles: moderate z, mainly Stanford et al.

Crosses: variety of known redshifts (vertical = lensed)

Solid circles: Chapman SMGs

Lines: low-z trends

Scatter in T by at least ~40%

Next big step from ALMA

- Resolved imaging spatial and spectrally
- Probes most (all?) of active ISM gas
 - Masses, non-virialised fraction, cf stars
 - Timescale, likely immediate evolution
- Winds and outflows clear by comparison in optical/IR
- Hours of integration match object-by-object AO spectroscopy in near-IR
- ALMA is always a spectrometer providing 8GHz of bandwidth to detect lines and continuum together
 - Developments in instrumentation funded soon

Detecting lines

- If continuum detected, a CO line can be detected in same data if z<2</p>
 - Also [CI]-809GHz valuable, as double-line with CO(7-6)
 - Also [CII]-158μm potentially valuable beyond reionization
- However
 - only ~10% of sources give line detection
 - Several tunings required to confirm
- This is avoided if bandwidth could increase to match atmospheric windows, moving to 25-to-35 GHz
 - Band-3 86-110GHz, 24GHz-wide
 - Band-4 125-160GHz, 35GHz-wide
 - Band-6 211-275GHz, 64GHz-wide (in 2)
 - 'Band-7a' 275-300GHz, 25GHz-wide
 - 'Band-7b' 335-355GHz, 20GHz-wide

- Redesign mixers, expand correlator, dichroic feeds within cartridge?
- Lab mixers can now cover ~15GHz
 - Promising, relatively inexpensive ALMA development in bands 3, 4, 6?

Information from other lines

- Receivers/correlators for ~35GHz can cover complete range
 - Band 3, 4 & 6 always contain 1 line if z>4, 0.8, 2.2
 - Still favorable with 20-25 GHz
- Detect continuum in bands 4 & 6, then get 2 CO lines for z>2, and so an unambiguous redshift. For z>1 majority of redshifts are found
 - Continuum colour yields dust temperature and hence accurate luminosity, once redshift is known
- Immediate recognition of 806/809GHz line pair from wide z range

```
86-110GHz
125-160GHz
211-275GHz
275-300GHz
335-355GHz
6.3<z<8.4</li>
4.0<z<5.4</li>
Prime ULIRG range
1.7<z<1.9</li>
1.3<z<1.4</li>
```

[CII] line from high-z (211-275GHz; 5.9<z<8.0)</p>

Line-to-continuum ratio

- Continuum in bands ~3 is modified Rayleigh-Jeans slope
 - Flux S α dust temperature T_d , $L_{FIR} \alpha T_d^{-5}$
 - SED bluer than blackbody
- CO line envelope redder than blackbody
- \blacksquare Σ L_{line} scales as $(L_{\text{FIR}})^{0.7}$
 - Strength of moderate-J line scales with T_d 0.7(~5)-1
- Hence line EW
 - Falls as CO-line J increases
 - Rises as dust temperature T_d⁻²
 - Like all EWs α (1+z)-1 or [for CO(J J-1)] as J_{assumed} -1

Line-to-continuum ratio

- Measured line EW depends on
 - EW_{true} $T_d^{-2} J_{assumed}^{-1}$
- EW_{true} J_{assumed}^{-1} about halves as $J \rightarrow J+1$
 - Different J thus differ by \sim 1.4 in T, or \sim 5 in L
 - Can again use T-L prior information
- Continuum colour gives complementary link to
 - T_d J_{assumed}-1
- In principle, single CO line plus continuum colour thus gives J_{assumed} (or z) and T_d, and hence L_{FIR}

CCAT: future submm telescope

- Existing submm facilities are limited to ~2mJy sensitivities by confusion
 - CSO JCMT APEX
- ALMA has great sensitivity
- Large format detectors are possible
 - SCUBA-2 soon to be deployed with 4x64x40 bolometers
 - Zmuidzinas et al's 'kinetic inductance devices' - microwave addressed detectors using mobile phone switch technology - could be >>1000² pixels
 - Detectors for a larger single-aperture ground-based telescope, and moving towards a large space-based cold aperture telescope
- Caltech--Cornell CCAT study
 - Best possible site, and atmospheric performance to 200 microns
 - Wide field of view (~30 arcmin) to accommodate new detector technology

Obscured galaxies: background

- Many sources of data
- Total far-IR and optical background intensity comparable
- Most of the submm (0.8mm) background was detected by SCUBA
- ISO and more precise (but similar) Spitzer limits detect ~20-30% in mid-IR
- Note: backgrounds yield weaker constraints on evolution than counts

Models: BJSLKI 99

Current detailed CO images

Regan et al. astro-ph/0107211

- Examples from BIMA SONG survey at z~0
- Irregular morphology in CO
 gas traces active star
 formation
- Velocity field faithfully recorded to <10 km/s</p>
 - Detailed velocity measurements are possible to z>2 with ALMA
- Images of this quality from high z with ALMA in ~24 h

Unique mm/submm access to highest z

- Redshift the steep submm SED
- Counteracts inverse square law dimming
- Detect high-z galaxies as easily as those at z~0.5
 - Low-z galaxies do not dominate submm images
 - Unique high-z access in mm and submm
- Ultimate limit at z~10 is set by CMB heating
- 2mJy at 1mm ~5x10¹² L_o
 - Note matches current depth of submillimeter surveys
 - ALMA has no effective limit to depth

Example of current single-antenna submm image

Ivison et al. (2000)

2.5' square

- Abell 1835
 - Hale 3-color optical
 - 850-micron SCUBA
- Contrast:
 - Image resolution
 - Visible populations
 - Orthogonal submm and optical views
- One of 7 images from Smail et al. SCUBA lens survey (97-02)
 - About 25 other SCUBA cluster images
 - Both bright sources have redshifts (2.5 and 2.3; lvison et al. 2000 & G P Smith priv comm)

Population of dusty galaxies

Orange stars – Barnard et al (2004) 850-µm upper limits

- Most data is at 850 µm
 - New bright limit from Barnard et al (0405156)
 - Very few are Galactic contaminating clouds
- First 2.8mm limit from BIMA
- Bright 95 (&175) µm counts from ISO being dramatically improved at 70 & 160 µm by Spitzer (started August 04 ApJS)
- Also recent data at 1.2mm (IRAM's MAMBO); 1.1mm (CSO's BOLOCAM) and 350/450µm (SCUBA & SHARC-2)

Morphologies for examples of SMGs

Smail et al. (2004) ApJ, 616, 71 Borys et al (in prep)

- GOODS images of SMGs with redshifts 3.4-1.9
 - Only radio detected examples included, so positions accurate
- Wide range of sizes, but typically larger than optically-selected galaxies at same redshift
- Range of colors, typically interacting and complex
- All detected by Spitzer-IRAC
 - Often as double sources

CO examples

Upper: submm continuum; lower optical HST

Tacconi et al (2006), Neri et al. (2003), Greve et al. (2005)

K band image (8" square), with IRAM CO contours of an ultraluminous galaxy at z=3.35

Abell 851

Genzel et al. (2004)

Submm observations of galaxies mature into the ALMA era (2012)

- ALMA has the resolution to match HST/JWST and resolve internal structure of high-z galaxies
- 3-D spectral information of even the most obscured regions
 - Reveals astrophysics at work
 - Provides direct redshifts
 - ALMA astrophysical probes are self contained
- New populations of objects, and pre-reionization galaxies
 - H₂ lines / first metals dust and fine-structure lines

SEDs: full & zoom of IRAC-24 region

Normalised to 60 & 100 quantity from the far-IR:radio relation

Radio-far-IR relation seems OK

- SED peak wave-length ranges over factor 3
- No nice stellar SED peak in IRAC, no neat spectral breaks/features...
- All SMG photometric redshifts need care

IRAC & MIPS-24 zoomed plot

Comparison with other populations

- Other more numerous high-z populations have less powerful clustering
- Are SMG redshift associations linked to overdensities of more numerous galaxy classes at the same redshift?
 - At z~2.5 spectroscopy essential to test
 - Links with 'BX' optically selected galaxies at z~2 in HDF
 - Narrow-band imaging with LRIS in March to search for associated optical galaxies
- Do they reside in such massive halos?
 - Not every 10' field can contain such an object
 - What is the nature of the biasing process?
 - Near-IR spectra hint at central 4-kpc dynamical masses of few 10¹¹M_o
 - Stellar population fitting implies few 10¹⁰M_o, but uncertainties from complex morphology
 - OSIRIS resolved spectra will be exciting

After Overzier et al. (2003)

ALMA & CCAT and cosmology

- Complementary facilities
 - CCAT surveys increase efficiency of ALMA
- Fast survey of sky for large scale structure
 - Identify several hundred gravitational lenses
- Nature of that structure found using ALMA
 - Redshift survey out to z~3-5
 - Not unique compared with WFMOS for example
- ALMA sees components of galaxies missing in optical/UV
- ALMA can see back prior to reionization
- ALMA can measure rotation curves in CO, which is a very cool, relaxed tracer
 - Opens new possibilities, see weak lensing