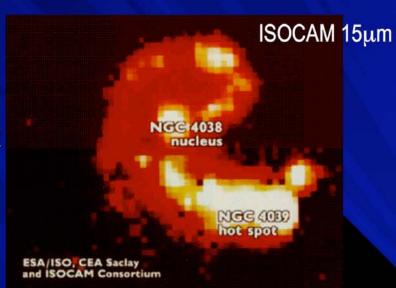
Deep Extragalactic Surveys

Andrew Blain
Caltech
CCAT Board 18th July 2007
Waterloo, Ontario, Canada

Introduction

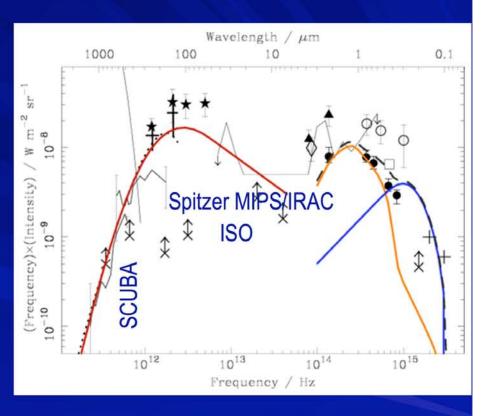

- Galaxy evolution is now studied against a fixed set of initial conditions
- The details of gas processing, stellar/AGN feedback and interactions remain incomplete
- The true shape and evolution of the luminosity function of galaxies is unresolved
- Where does CCAT fit in?

The context

- Optical spectra reveal details of galaxies to reionization, and hints beyond
 - 8-10 m class telescopes ... TMT/ELT
- Quantifying obscuration and avoiding deceptive 'frosting' are always necessary
 - IRAS / ISO / Spitzer ... Herschel / ALMA
 - Planck / WISE all-sky surveys
- The mechanisms driving evolution require knowledge of environment and duration of activity
 - 1-10 Mpc structures (2'-20' in extent)
 - Structures separated by ~100Mpc (~3 deg)
 - useful sample over full LF requires Gpc³ volumes

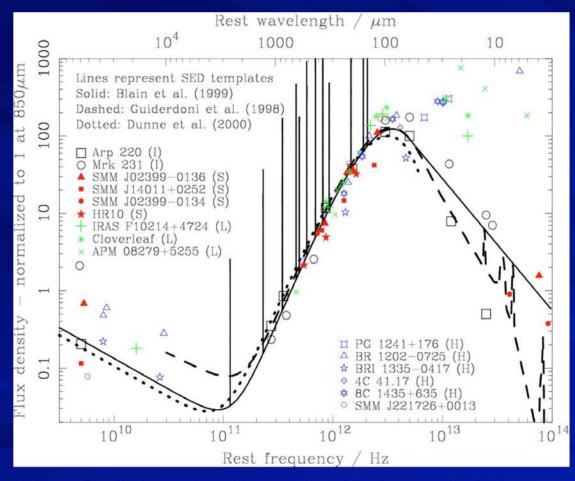
A hint of astrophysical detail

An excellent example when nuclear, GMC, stellar and ISM emission are revealed at different places in the UV through submm About 90% of energy escapes at far-IR wavelengths



Spitzer IRAC mid-IR

CSO/SHARC-2 Dowell et al. 350µm HST WFPC2
Multiband optical


Obscured galaxies: background

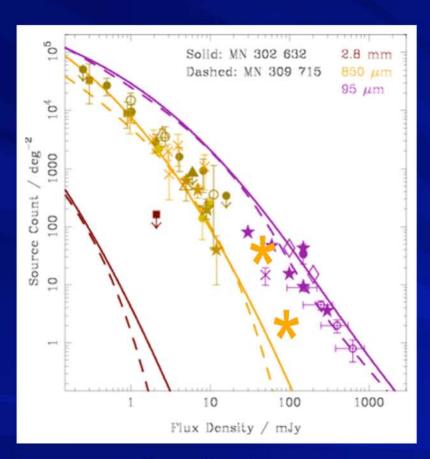
Many sources of data Total far-IR and optical background intensity are comparable Most of the submm (0.85mm) background detected by 14" SCUBA resolution ISO and more precise Spitzer images detect ~20-30% in mid-IR Note: backgrounds yield weaker constraints on evolution than N(>S) counts

Models: BJSLKI 99

Observed far-IR/submm SEDs

Mix of different sources traces out some of the range of SEDs properties Milky Way & APM08279 are most extreme shown Non-thermal radio Radio-far-IR link Thermal dust **Dominates luminosity** Hotter & broader in AGN? PAH C=C line features

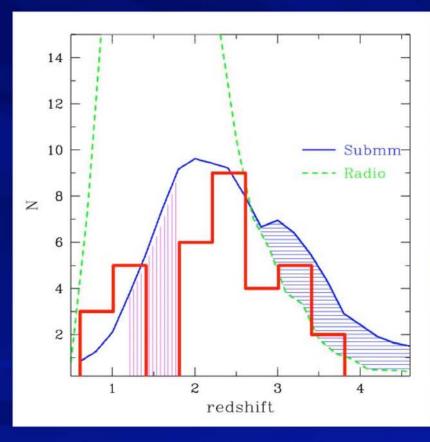
Normalized where sizeable sample of `submm galaxies' are known. Redshifts z~2-3 for 73 from Chapman et al.


Requirements for future

- Resolution: ALMA
- Quantifying luminosity: multi-band data, always including submm & far-IR
 - Radio can be proxy for mid/far-IR
 - Distance also required: CO or atomic spectra
 - Follow-up is arduous now
 - Future surveys need to provide better positions and more spectral information
- Finding true range of candidates' properties
 - Volume surveyed includes representative number of all environments, implies 100's of square degrees

Existing surveys

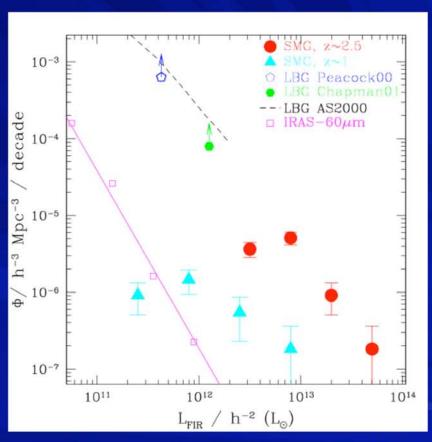
- SCUBA, MAMBO, BOLOCAM, AzTEC, SHARC2
 - About 400 sources in total
 - About 120 with redshift information
 - About 30 with dynamical information
- Follow-up involves radio, mm interferometer continuum, optical/near-IR spectra, rest near-IR continuum, X-ray spectroscopy
 - Full range of available resources
 - Time demands now imply using mostly archived data


Population of dusty galaxies

Orange stars – Barnard et al (2004) 850-µm upper limits

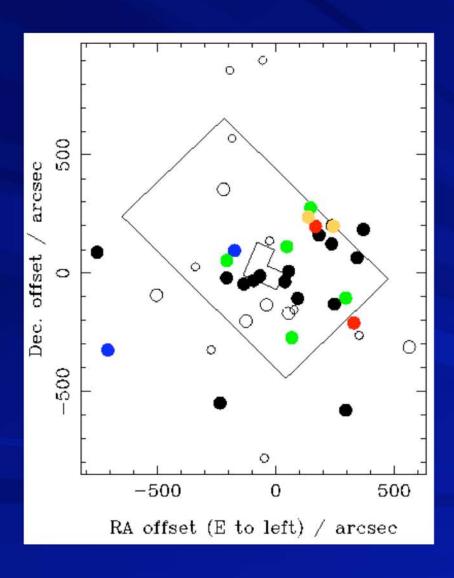
- Most data is at 850 µm
 - Bright limit from Barnard et al (astro-ph/0405156)
 - Very few are Galactic contaminating clouds
- First 2.8mm limit from BIMA
- Bright 95 (&175) µm counts from ISO being dramatically improved at 70 & 160 µm by Spitzer (started August 04 ApJS)
- Also data at 1.2mm (IRAM's MAMBO); 1.1mm (CSO's BOLOCAM) and 350/450μm (SCUBA & SHARC-2)

Redshift distribution N(z) for radiopinpointed SMGs



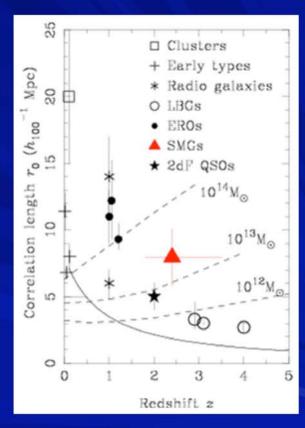
Chapman et al. (2003; 2005)

- Red histogram: Chapman et al ApJ 2005
 - 73 redshifts
 - Median z=2.4 and spread in redshift z~0.65 is good description
- Lines: expected submm & radio N(z)'s from Chapman's model
 - Magenta shade at z~1.5 is 'spectroscopic desert': rest-UV & rest-optical lines both hard to observe
 - Blue shading at highest z is incompleteness due to radio non-detection. Likely modest, but uncertain
- Difficulty of finding positions will vanish with ALMA


Luminosity function

- Based on known redshifts and fraction of population with redshifts (~50%) can see dramatic evolution from z=0 to 1 to 2.5
- Plausible connection to the luminosity function of opticallyselected high-z galaxies
 - Lower limits as only a fraction of far-IR luminous objects are detected in UV surveys
- Interesting to obtain Spitzer LF results at z~1-2 for comparison
- Key goal is overall high-z LF
 - Current limit is few 10¹² L_o
 - Most high-z samples 10x fainter

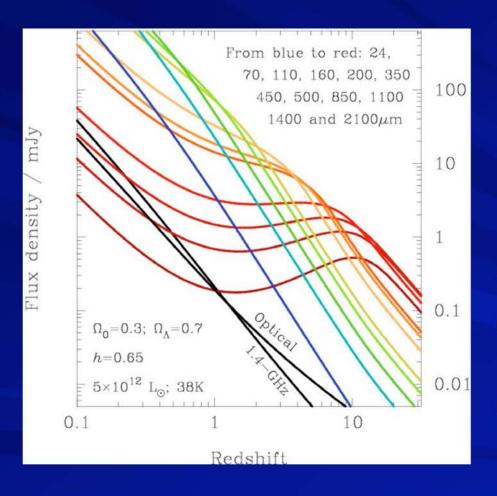
Chapman et al. (2005); astro-ph/0412573


SMGs trace 3D large-scale structure peaks?

- Largest number of SMGs are in and around the HDF field
 - HDF & GOODS frames show where morphology information is available
- Circles: all known radio-submm galaxies
 - Small empty: no z attempt
 - Large empty: no z found
 - Black filled: z found
 - Colored filled: 'associations' all z's within 1200 km/s
- Green points (z=1.99) match optical galaxy z spike (Steidel et al)
- Only spectroscopic redshifts can reveal this structure
- Many more 'clusters' or associations expected than expected from our knowledge of SMG N(z)
- Narrow-band searches under way

Comparison with other populations

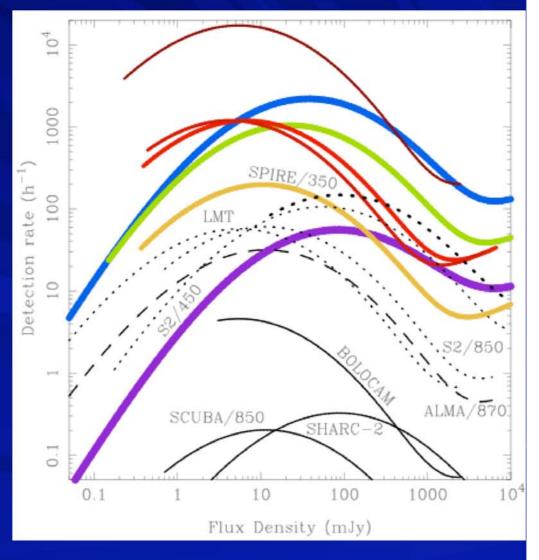
- Other more numerous high-z populations have less powerful clustering
- Are SMG redshift associations linked to overdensities of more numerous galaxy classes at the same redshift?
 - At z~2.5 spectroscopy essential to test
 - Links with 'BX' optically selected galaxies at z~2 in HDF
 - Narrow-band imaging with LRIS in March to search for associated optical galaxies
- Do they reside in such massive halos?
 - Not every 10' field can contain such an object
 - What is the nature of the biasing process?
 - Near-IR spectra hint at central 4-kpc dynamical masses of few 10¹¹M_o
 - Stellar population fitting implies few 10¹⁰M_o, but uncertainties from complex morphology
 - OSIRIS resolved spectra will be exciting


After Overzier et al. (2003)

Volume to cover

- Current surveys target ~1 deg² to z~4
 - 7 Gpc deep
 - 25 Mpc wide (at z>0.5)
- Large-scale structure extends ~200 Mpc:
 - Want 10x10 deg fields
 - Matching Spitzer legacy
- Several 1000 galaxies per square degree, but many fewer bright 'Rosetta stones'

- Correlation length is 5-10 Mpc:
 - would like more cubic volumes not skewers
 - Implies field sizes out to 30-40 deg (1 Gpc) would be worthwhile
- These far exceed existing survey fields
 - LSST / eVLA to come
- Galactic caps from Planck & WISE will be uniquely attractive targets
 - Galaxy science directly
 - CMB foreground in parallel


Mm/submm wave access to high-z

- Redshift the steep submm SED to counteract inverse square law dimming
 - High-z galaxies as visible as those at z~0.5
 - Low-z (and low-L) galaxies do not dominate submm images
 - Can be confident all sources are distant
- Ultimate limit to redshift extent at z~10 is set by CMB heating
- 2mJy at 1mm ~5x10¹² L_o
 - Note ~few mJy matches current depth of submillimeter surveys
- A deeper survey finds more galaxies at all luminosities/redshifts

CCAT: Speed vs other instruments

- ALMA, SCUBA-2, 50-m LMT, Herschel
- Assume CCAT cameras
 - 1100, 870, 740, 620, 450, 350, 200 μm
 SWCAM 32000 pixels
 - LWCAM 16000 pixels
- Fastest depth ~few mJy at 1100μm
 - FOV 25 arcmin²
 - 1mJy 5σ in 30s
 - 1/2-sky survey in 2.5 yr
 - 10⁸ galaxies
- Confusion limited (350micron)
 - 0.05mJy 1σ in 600s
 - 2 deg² in 40hr
 - 10⁶ galaxies over few yr
- Huge galaxy surveys
- CMB foreground maps
- Note other devices
 - ALMA is hindered by small FOV
 - SPIRE is confusion limited
 - LMT could reach high speeds at 1100μm with LWCAM-type detector, but not at SWCAM wavelengths

Uses of huge samples

- Highlight likely high-density areas at z~2
- Find rare pre-reionization (red) sources, that drop out in optical/IR bands
- Match the existing spectral database from SDSS, and photometric redshift surveys in future
- Define luminosity function to few % accuracy over decades of brightness
- Make angular correlation measurements in interim before redshifts are sifted
- Match low-background fields from WISE, Herschel, Planck and future CMB imagers
- Definitive foreground population for CMB

Summary

- CCAT's beam is less confused
 - Goes deeper to match other populations
 - Source density better matched to follow-up
- CCAT goes wider to find
 - Millions of galaxies
 - Their threading through large-scale structure
 - In thousands of clusters (probably see SCUBA-2)
 - Entirely complementary to ALMA
- Excellent weather implies more uniform 350/450 micron coverage
 - Combines with resolution
 - Pre-selection via color for ALMA