The Cornell Caltech Atacama Telescope

Overview, Progress & Status

CCAT Board 18,19 July 07

Project Management

Riccardo Giovanelli Thomas A. Sebring Simon Radford Jonas Zmuidzinas Terry Herter Paul Goldsmith

Project Manager
Deputy Project Manager
Project Scientist Caltech
Project Scientist Cornell
Manages JPL CCAT Activities

Currently Planned Project Phases and Schedule

- Feasibility/Concept Design Study
 - October 2005 January 2006
 - Develop Baseline Concept, Assess Feasibility, Initial Cost Estimate
- Consortium Development Phase

Current

- June 2006 -2008
- Interim Consortium Agreement Signed June 2007
- Identify and Secure Funding
- Complete Full Project Agreement Mid 2008
- Technical Development Phase
 - Mid 2008 Mid 2011
 - Detailed Design, Manufacture, Integration
- Commissioning Phase
 - 2011 2012
 - Optimize Performance & Handover to Operations

Consortium Status

1	Caltech	20%
	• \$ 20M Proposal Prepared for Moore Founda	ation
	 Additional JPL involvement, i. e., instrument 	nts?
1	Cornell University	25-30%
	 Major Donor Identified ~\$ 10 M 	
	 Working to Find Support for Remainder 	
1	University of Colorado Boulder	5-10%
	Funding Under Development	
✓	UK Astronomy Technology Centre	25%
	Statement of Intent Submitted to STFC	
	Canada (Univ of BC & Waterloo)	20%
	Canadian Government Funding	
	Strong Interest at Some Other Institut	tions

CCAT Requirements

	Requirement	Goal	remark	
Wavelength	350 – 1400	200 - 2500	μm	
Aperture	25 m			
Field of view	10'	20'		
Half WFE	< 12.5 μm	< 9.5 μm	rms	
Site condns.	< 1.0 mm	< 0.7 mm	median pwv	

It is the Combination of These Features Along with Advanced Detector Arrays that Make CCAT a Revolutionary New Observatory

Optical Design...German Cortes Provided Updated Prescription for Faster M1...Smaller Telescope & M2

Optical Design...German Cortes Provided Updated Prescription for Faster M1...Smaller Telescope & M2

The Atacama Desert

- Site is 5612 m Altitude
- ~2 hours Flying Time from Santiago to Calama
- ~2 Hours Drive from Antofagasta, The Nearest Port
- Scientific Preserve Set Aside for Astronomy
- Managed by CONICYT
 - Comisión Nacional de Investigación Científica y Tecnológica de Chile

Chajnantor Plateau (5000 m) CBI APEX ALMA Co. Chajnantor

Dietrich/Caltech

Better 350 µm Transparency @ CCAT Site

- Two Tippers: CCAT (5600 m) & CBI (5050 m)
- Side-by-Side at CBI: Same Values
- Better Transparency at CCAT
- Less Water Vapor at CCAT
 - $\tau_{\rm off} \approx 0.5$

 - PWV(CCAT) ≤ 70% PWV(CBI)

Chajnanator Working Group Participants

CHAJNANTOR WORKING GROUP (CWG)

April 26th and 27th '07

	Name	Organization
F	Limon, Michele	ACT
2	Hincks, Adam	ACT
3	Dunner, Rolando	ACT
4	Beasley, Tony	ALMA
5	Dierksmeier, Claus	ALMA
5	Donoso, Eduardo	ALMA
7	Edmunds, Ann	ALMA
3	Muñoz, Karla	ALMA
P	Smeback, Russell	ALMA
0	Ikenoue, Bungo	ALMA-J
1	Nyman, Lars-Âke	APFX
2	Ezawa, Hajime	ASTE
3	Oshima, Tai	ASTE
4	Uehara, Masao	ASTE
5	Hardy, Eduardo	AUI
6	Ibañez, Roberto	AUI
7	Pilleux, Mauricio	AUL
8	Bustos, Ricardo	CALTECH
9	Oyarce, Nolberto	CALTECH
0	Raaford, Simon	CALTECH
1	Readhead, Anthony	CALTECH
2	Reeves, Rodrigo	CALTECH
3	Sebring, Thomas	CALTECH
4	Shepher, Martin	CALTECH
5	Weintraub, Larry	CALTECH
6	Campusano, Luis	CONICYT
7	Norambuena, Alicia	CONICYT
8	Lira, Felipe	ESO
9	Mizuno, Norikazu	NANTEN
o	Aoki, Tsutomu	TAO
3	Dol, Mamoru	TAO
2	Minezaki, Takeo	TAO
3	Mitani, Natsuko	TAO
4	Motohara, Kentaro	TAO
5	Tanabe, Toshihiko	TAO
6	Leonardo Bronfman	UCHILE

Power Status

- ALMA Must Decide Within <6 Months
 - Antennas Coming, Need to Complete Necessary Infrastructure
- ALMA Plans for Power
 - 3 Years Ago: Gas Turbine Generators Using Supply from Argentina
 - 1 Year Ago: Grid Power from Calama or Elsewhere
 - Currently: Either Grid Power or Diesel Generators
- Gas Supply is Vanishing
 - Argentina's Improving Economy Provides Internal Customers
 - Insufficient Supply to Use Directly for Power
 - Power Companies Finding Sources of Energy Very Difficult
- Power Companies Not Bullish
 - Have Major Contracts to Supply Power (e.g. for Mining)
 - Gas Supply is Vanishing, Other Sources Too Expensive
 - Lawsuits Over Failure to Supply Power Being Filed
- ALMA May Receive No Bids to Install Grid to Atacama
 - May Also be Out of Time (to Obtain Right of Way & Construct Lines)

Power (cont.)

- ALMA Wants \$\$\$\$ to Increase Service from OSF to High Site
 - If This Leg Needs to be Larger to Supply Other Observatories
 - Larger Wires, Transformers, etc.
 - "Guesstimated" Cost: \$500k-\$1.5M
 - Needs to be Done NOW...but...ALMA Not Sure if Xtra Power Available
- CCAT Studies Alternative Energy
 - Requested by Luis Campusano (CONICYT)
 - Two Levels of Interest
 - Alternatives Might Address Needs of Smaller Observatories
 - Science Preserve Might Serve as Demonstration Site for Chile
 - Previous Study by ALMA Showed Little Hope
- Results of Brief CCAT Alternative Energy Study
 - Brief Survey of Solar & Wind Approaches
 - Best System Probably Hybrid Solar/Diesel/Lead Acid Battery
 - Capital Cost More Than \$1M More...Long Term Benefit Questionable
 - Report Submitted to CONICYT
 - Conclusion...Diesel Power Likely, Minimize Usage in Design of Observatory

CCAT Site Development Plans

- October 2007 Intend to Upgrade Site Testing Installation
 - Minor "Upgrade" to Road (~ 1 Pass with Bulldozer)
 - Level Small Area at CCAT Site
 - Install 20' Container
 - Pre-Manufactured with Insulation, Solar Power, Batteries, Workbenches, Generator, Radio, etc.
 - Painted w CCAT Logo
 - Relocate Site Testing Equipment Inside Container & Mount Existing Solar Cells, Antennas, etc.
 - Deploy Atmospheric Testing Interferometer
- Coordinating Plans with CONICYT
 - Hope to Scale Plans to Not Require "New" Permissions
 - May Need to Reduce Scope
- Objective: Better Base of Operations & Improved Safety;
 Equivalent Footprint on Mountain to TAO

Facility Concept Design: M3 Engineering & Technology

- Design by M3, Tucson
- Summit Facility
- Road and Site Design
- Oxygen Enriched Working Areas
- Minimum Scope to
 Support Long-Term
 Operations

Facility Concept Design: M3 Engineering & Technology

- 2 Meetings with M3Over Past Year
- ~\$300k to Develop
 Concept Further &
 Bid Documents for
 Site Development
- Discussion of Revisions in Design to Lower Cost
- M3 Recent Experience with ALMA Helps Accurate Cost Estimation

Telescope Dome Concept

- 40 m Diameter at Equator
- 30 m Aperture
- Rib & TieStructure isHighly Repetitive
- Operation via Two SimilarRotation Stages
- Aperture Sized to Keep M2 2 meters Inside Dome

Calotte Uses 6x Less Power

Telescope Dome Concept

- 40 m Diameter at Equator
- 30 m Aperture
- Rib & Tie Structure is Highly Repetitive
- Operation via Two Similar **Rotation Stages**
- Aperture Sized to Keep M2 2 meters Inside Dome

Calotte Uses 6x Less Power

Telescope Dome Concept

- 3 Meetings with AMEC in the Past Year
- Much Funded Work by TMT Project
- Tilted Rotation
 Stage Major
 Technical Challenge
- 2 Meetings with MERO TSK, Germany
- Lower Cost/Weight Structural Concept by MERO, Germany

Calotte Uses 6x Less Power

TMT Design

TMT Design

MERO @ TSK

AMEC and Mero TSK Designs

MERO ® TSK

CCAT Mount

- Design by Vertex RSI
- Uses Approaches from Radio and Optical Telescopes
- Hydrostatic & Rolling Element Bearings

Pointing
Offset Pointing
RMS

Dynamics

Unguided Jitter

Open Loop Drift Max Accel.

Axis Velocity

2 arcsec RMS

< 0.5 arcsec

0.25 deg/sec

0.01 deg/sec²

<0.1 arcsec

0.1 arcsec/min

2 deg/sec²

1 deg/sec

CCAT Mount

- 2 Meetings with VRSI in the Past Year
- Discussions of Design Changes to Lower Weight and Cost
- Brokered Meeting with Vertex Antennentechnik in Duisburg, Germany
 - Provider of ALMA Antennas
 - Same Company, Different Branch
 - Vow to Work Together to Apply Best Knowledge and Skills

Primary Mirror Truss Design

TrussSupportsPrimaryMirror Panels

Must be Stiff and Light

- Design by Stutzki Engineering
- Funded by JPL

Primary Mirror Truss Design

- TrussSupportsPrimaryMirror Panels
- Must be Stiff and Light
- Design by Stutzki Engineering
- Funded by JPL

Primary Mirror Truss Design

- TrussSupportsPrimaryMirror Panels
- Must be Stiff and Light
- Design by Stutzki Engineering
- Funded by JPL

- Initial Geometric Concepts
- Determines Gravity Deformation
- Explores Mode Frequencies and Shapes
- Layered Design
- Uses MERO Type Bolted Nodes
- Packs Small Assembles Easily
- Accuracy Built In Not Adjusted

- Initial Geometric Concepts
- Determines Gravity Deformation
- Explores Mode Frequencies and Shapes
- Layered Design
- Uses MERO Type Bolted Nodes
- Packs Small Assembles Easily
- Accuracy Built In Not Adjusted

- Initial Geometric Concepts
- Determines Gravity Deformation
- Explores Mode Frequencies and Shapes
- Layered Design
- Uses MERO Type Bolted Nodes
- Packs Small Assembles Easily
- Accuracy Built In Not Adjusted

- Initial Geometric Concepts
- Determines Gravity Deformation
- Explores Mode Frequencies and Shapes
- Layered Design
- Uses MERO Type Bolted Nodes
- Packs Small Assembles Easily
- Accuracy Built In Not Adjusted

PM Truss Concept

Mass (Metric Tons)

• Struts 12.5

• Nodes 4.7

Mirrors5

Actuators & Sensors 1.5

Total Dead Load 23.7

- Number of Members
 - 2892
 - 30% Fewer than 1st Design
- Gravity Deformation
 - ~ 5 mm Maximum
 - <1/4 Actuator Range
- 1st Natural Frequency
 - 5.3 Hz

PM Truss Concept

Mass (Metric Tons)

• Struts 12.5

• Nodes 4.7

Mirrors

Actuators & Sensors 1.5

• Total Dead Load 23.7

- Number of Members
 - 2892
 - 30% Fewer than 1st Design
- Gravity Deformation
 - ~ 5 mm Maximum
 - <1/4 Actuator Range
- 1st Natural Frequency
 - 5.3 Hz

PM Truss Concept

Mass (Metric Tons)

• Struts 12.5

• Nodes 4.7

Mirrors

Actuators & Sensors1.5

Total Dead Load 23.7

- Number of Members
 - 2892
 - 30% Fewer than 1st Design
- Gravity Deformation
 - ~ 5 mm Maximum
 - <1/4 Actuator Range
- 1st Natural Frequency
 - 5.3 Hz

U, U3

3

+1.000e+00 +8.333e-01 +6.667e-01 +5.000e-01 +3.333e-01 +1.667e-01 +2.980e-08 -1.667e-01 -3.333e-01 -5.000e-01

-6.667e-01 -8.333e-01 -1.000e+00

Primary Mirror Concept

- Steel Truss: ~5x
 Lower Cost than
 CFRP
- Commercial
 Actuators Support
 Axial and Lateral
 Loads
- 7 Ring Panel Layout
- 7 Sets of Identical Panels
- Total ~ 210 Panels@ ~1.7m MajorDimension

Primary Mirror Concept

- CFRP Truss May be Affordable After All
- Polytec Has New Lower Cost Actuator
- JPL SegmentModeling EffortOptimizedSegmentationPattern
- D. Woody Performed Initial Control and Segment Support Analysis

Primary Mirror Panels

- Four Current Panel Approaches Considered
 - Carbon Fiber Epoxy and Aluminum Honeycomb
 - Precision Molded Lightweight Borosilicate
 - Ni/Al Sandwich
 - Al/Al Sandwich
- Panels Kinematically Supported on 3 Points by Bipod Flexures
- ~8 kg/m² Areal Density

Primary Mirror Panels

- Four Current Panel Approaches Considered
 - Carbon Fiber Epoxy and Aluminum Honeycomb
 - Precision Molded Lightweight Borosilicate
 - Ni/Al Sandwich
 - Al/Al Sandwich
- Panels Kinematically Supported on 3 Points by Bipod Flexures
- ~8 kg/m² Areal Density
- ~5 µm rms Panel
 Figure <u>Total</u> Error

Work on Panel Design

- Investigation of Panel Reinforcement Geometry
- Optimization of Mounting Points
- Stiffness for Future Wind Deformation Analysis
- Performed by S.Parshley at Cornell

Precision Molded Borosilicate Lightweight: ITT Industries, Rochester, NY

- What are they?
 - Borosilicate glass
 - Corrugated "egg crate" Core
 - Thin Facesheet Fused to Core
 - Precision Molded
 - Can be Ion Figured

- Development Continues Under Other Funding
- .6 m Demonstration Underway

Optics Working Group Formed

Members

Eli Atad Edgui UK ATC

Eri Cohen JPL

Simon Radford Caltech

Thomas Sebring Cornell

David Woody
 OVRO/Caltech

 Objective: To investigate and develop approaches to manufacture of optics for CCAT.

Meetings:

Jan 07 Kickoff Meeting at Caltech

• Feb 07 Visits to CFRP Optics Vendors and Mold Makers

Mar 07 Visits to CMM Manufacturers

Progress: Identification of 3 qualified vendors for CFRP panels. Identification of mold materials and processes. Identification of metrology approach. Identification of critical risk areas and areas of required process development.

JPL Precision Segmented Reflector Program~1989-1992

- Fabricated Several CFRP Sandwich Panels (Al and CFRP core)
- Manufactured at JPL, Hextek, Composite Optics Inc.
- Attempt to Make Cryo Temp Mirror for Space
- Eri Cohen Directly Involved in Effort
- ~ 1 meter Diameter Panels Achieved ~2-5 microns rms Surface

Vendors of CFRP Reflectors

- ATK (formerly Composite Optics Inc, San Diego, CA
 - Most Technically Advanced, Very Interested in our Program
 - Would Like to be Exclusive Vendor, Prepared to do R & D
 - Purchased CMM Which Could Accommodate Panels
- Vanguard Composites: San Diego, CA
 - Manufacture Longer Wavelength Reflectors for Space
 - Strong on Composite Technology but Not With The Required Precision
- Applied Aerospace Structures Corp., Stockton, CA
 - High Volume, High Precision Space & Flight Structures
 - Good Understanding of Technology, But No Equivalent Products
- Other Vendors
 - Several Other US Vendors Possible, e.g. ITT Aerospace
 - Multiple Potential European Contractors Working in Composites Also
 - Basis for a Good Cost Competition but....
 - Stages of Development for Technology Validation More Complicated

Similar Products

- Ku/Ka Band Satellite Reflectors
 - "Volume" Production
 - ~.001 Inch PV Precision
 - ~2 m Diameter
- 3.0 Meter Parabolic Antenna
 - ~5 kg/m²
 - 400 gHz
 - About 2.5x Worse Surface Quality Than Required for CCAT
 - Right Size for M2 & M3 for CCAT
- Metrology Limits Precision for Companies Making Reflectors
 - Laser Trackers Only Permit
 ~0.001 inch Measurement

Similar Products

- Ku/Ka Band Satellite Reflectors
 - "Volume" Production
 - ~.001 Inch PV Precision
 - ~2 m Diameter
- 3.0 Meter Parabolic Antenna
 - ~5 kg/m²
 - 400 gHz
 - About 2.5x Worse Surface Quality Than Required for CCAT
 - Right Size for M2 & M3 for CCAT
- Metrology Limits Precision for Companies Making Reflectors
 - Laser Trackers Only Permit
 ~0.001 inch Measurement

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size Company
 - ~ Same Tolerances

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size Company
 - ~ Same Tolerances

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size Company
 - ~ Same Tolerances

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size Company
 - ~ Same Tolerances

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size Company
 - ~ Same Tolerances

- 115 Employees
- Complex Invar Tooling
- Able to Make Most Shapes
- Limited to ~25 μ PV
- Mold Costs Acceptable
- Coast Composites, San Diego
 - Experience in Graphite Molds & Invar, Same Size

Metrology

- Optical Tests of Panels Not Feasible
- Contacted NIST wrt
 Coordinate Measuring
 Machines
- 3 Potential Vendors ID'd
- Visited 2 in Germany
 - Zeiss: Oberkochen
 - Leitz: Wetzlar
- Either Could Provide CMM
- Standard OTS Machines
- Accuracy of <1 µ Within Standard Capabilities
- CCAT Panels Use Only ~ 17 mm of "Z" Travel
- Machines Cost ~\$350-500k
- Might Make Customer Furnished Equipment for Panel Fab Effort

ATK Has Purchased a Machine Already!!!

Metrology

- Optical Tests of Panels Not Feasible
- Contacted NIST wrt Coordinate Measuring Machines
- 3 Potential Vendors ID'd
- Visited 2 in Germany
 - Zeiss: Oberkochen
 - Leitz: Wetzlar
- Either Could Provide CMM
- Standard OTS Machines
- Accuracy of <1 µ Within Standard Capabilities
- CCAT Panels Use Only ~ 17 mm of "Z" Travel
- Machines Cost ~\$350-500k
- Might Make Customer Furnished Equipment for Panel Fab Effort

ATK Has Purchased a Machine Already!!!

Edge Sensors

- Mount Between Primary Mirror Panels
- Sense Segment Positions
 With Respect to Each
 Other
- Several Discussions with Fogale Nanotech
- New Fogale Product
 Operates by Electrical
 Induction Rather than
 Capacitance
- Can Measure Piston, Tip, and Space Between Panels
- Measure Only Changes in Position
- Allow Control of Segment Positions

Current CCAT Efforts: Segmented Mirror Control Modeling

- Model Developed by D. MacDonald et al
- Incorporates
 - Segmentation
 - Edge Sensor Distribution
 - Error Propagation
 - Control Law

Co Aligned IR Guider Telescope

- Mounted Behind M2 or Behind M1 Looking Through Hole
- T. Herter Analysis Indicates
 Sufficient Objects and Resolution
 from 12 inch Telescope
- One Option: RC System Telescope
- All CFRP Structures
- 12 inch Primary, 1 Degree FOV
- Enhanced Aluminum (SiO2/TiO2) overcoat - 96.9% reflectivity.
- Near Zero Expansion, Carbon Fiber Truss
- CNC Machined Rear Cell and Truss Base bolts directly to mount or mounting plate.
- Base Price \$9,400

Contractors Worked With and Visited in the Past Year; 34 In Person Meetings

- Vertex RSI Richardson, TX & Duisburg, Germany (2x) (Telescope Mount)
- Amec Dynamic Structures Vancouver, BC (2X) (Dome)
- Temcor Los Angeles, CA (Dome)
- M3 Engineering & Technology Tucson, AZ (2X) (Facility Architecture)
- Steward Observatory Mirror Lab, Tucson, AZ (Manufacture of Panel Molds)
- Composite Mirror Applications, Tucson AZ (2X) (Composite Mirror Panels)
- Composite Optics (ATK) San Diego, CA (2X) (Composite Mirror Panels)
- Applied Aerospace Structures Stockton, CA (2X) (Composite Mirror Panels)
- Adaptive Optics Associates Cambridge, MA (2X) (Optical Panel Alignment System)
- Coast Composites Irvine, CA (Invar and Graphite Mirror Panel Molds)
- ITT Aerospace, Rochester, NY (3X) (Composite and Glass Mirror Panels)
- Corning Glass, Corning, NY (Borosilicate and ULE for Panels and Molds)
- Fogale, Nanotech Nimes, France (Edge Sensors)
- Geotechnical Consultores Santiago, Chile (Geotech Survey)
- Zeiss Oberkochen, Germany (Coordinate Measuring Machines)
- Leitz (Hexagon) Wetzlar, Germany (Coordinate Measuring Machines)
- Media Lario Bosisio Parini, Italy (Ni/Al Mirror Panels)
- MERO TSK Wurzburg, Germany (Truss and Dome Structure)
- Polytec PI Auburn, MA (Actuators)
- Stadco Inc. Los Angeles, CA (Invar Molds for Mirror Panels)
- Vanguard Composites San Diego, CA (2X) (Composite Mirror Panels)
- TNO Science and Industry, Delft, The Netherlands (Al Composite Panels)

Astronomical Institutions Met With to Discuss CCAT

- Max Planck Institute, Bonn & Garching, Germany
- ESO, Garching, Germany
- Harvard Smithsonian Center for Astronomy
- University of Arizona, Tucson, AZ
- University of Virginia, Charlottesville, VA
- NRAO, Charlottesville, VA
- University of Chile (4X in past year)
- NRAO, Soccoro, NM (Review ALMA Antennas)
- SMT (H.Hertz Telescope, Mt. Graham, AZ
- LBT, Mt. Graham, AZ
- Rochester Institute of Technology, Rochester, NY
- TMT Project Pasadena, CA
- Tokyo Astronomical Observatory San Pedro de Atacama

CCAT Moves Ahead!

- The CCAT Project is Progressing Very Well
- Signing of an Interim Consortium Agreement
 Marks an Important Step
- Current Partners Would be Sufficient to Build Telescope if All Desired Funding Were Found
- Additional Partners Have Expressed Strong Interest
- Good Progress Has Been Made in the Most Critical Technical Areas
- We Expect to Begin Construction in About 1 Year

