Direct-Detection Spectroscopy with CCAT

C. M. Bradford with J. Zmuidzinas, J. Glenn, T. Nikola, G. Stacey

December 13, 2006

<u>Topics</u>

- Scientific motivation for terrestrial submillimeter spectroscopy. (extragalactic: local universe and redshift > 1).
- Sensitivities of CCAT for spectroscopy, context with ALMA & pending flight opportunities.
- Areal and redshift density of high-z sources accessible via C+ with CCAT.
- Optimal spectrometer choices, relationships to present-day instruments.
- Instrument scope, detector options, cost.

Introduction: IR astronomy is far-IR astronomy

Fig. 13. Our best Cosmic Optical Background (blue-shaded, left) and Cosmic Infrared Background (red-shaded, right) estimates. The gray-shaded area represents the region of overlap. See Fig. 9 for the other symbols.

Cosmic Backgrounds Galaxy counts + COBE + Spitzer (Dole et al. 2005)

History of stars and galaxies written at both optical / NIR and far-IR wavelengths.

Questions: What have we learned about the production of the CFIRB? What is the relationship between the populations producing the CFIRB and the COB?

This interesting half of the luminosity has been difficult to observe

Extragalactic spectroscopy beyond 100 microns

High-J CO lines: Astrophysics of the molecular gas

ALMA will resolve out extended emission in nearby galaxies

CCAT instrumentation workshop: Caltech 13 Dec 2006

Far-IR background is being resolved into galaxies

How to do meaningful follow up of these sources?

Spectroscopy with CCAT

CCAT instrumentation workshop: Caltech 13 Dec 2006

and JWST.

CCAT -- redshifted fine structure lines

Fine structure lines probe ionized and neutral atomic gas.

- → HII region densities
- \rightarrow Atomic gas pressures
- \rightarrow UV field strength and hardness
- → Starburst / AGN discriminator
- → Stellar mass function

Suite of lines is redshifted into CCAT atmospheric windows
provides redshift template independent of optical follow-up.

-> Also provides unique, extinctionfree astrophysical probes: UV field strength, hardness -> stellar mass function.

CCAT instrumentation workshop: Caltech 13 Dec 2006

CCAT Spectroscopic Sensitivities

Herschel, SOFIA -small collecting area, no substantial advantage since warm apertures.

- **CCAT** less sensitive than ALMA, but with full window bandwidth, CCAT can carry out spectroscopic surveys on galaxies with comparable speed.
 - Can be even faster if coupling many galaxies at once.

850 micron N(S) is to first order a luminosity function

Models from A. Benson et al. (Galform group) modified IMF and star formation

modified IMF and star formation timescale included to reproduce 850 micron counts

Models provide approach to CCAT population z distribution: Apply to C+

350 & 450 microns window are likely to access 31% of the 850 micron population in C+

Redshift Distribution from GALFORM model -- similar to Chapman

C+ Line luminosity fraction -> from Maiolano 05

Local-universe LIRGS and ULIRGs have similar C+ intensities -> Saturation of *C*+

Redshifted C+ Detectability with CCAT (JXZ)

 Constant C+ luminosity (log L_{C+}~8.7) for LIRGS to ULIRGS

 -> CCAT 350 μ m sensitivities well-matched to these sources at redshift 1-1.4

• 88 μm [OIII] detectable ULIRGS at z=3 if f_{line} > 0.003

CCAT instrumentation workshop: Caltech 13 Dec 2006

Redshifted C+ Detectability with CCAT

 Constant C+ luminosity (log L_{C+}~ 8.7) for LIRGS+

 -> CCAT 350 μm 1hour sensitivity wellmatched to these sources at redshift 1-1.4

• 4 hours @ 450 μ m (z ~ 1.8-2.2) for the same sources.

How many such sources are there per area per redshift?

MIPS 24um sensitivity, redshift selection

24 micron surveys (MIPS GTO team):

Spectroscopic and photometric redshifts

Use SED models to estimate luminosities from 24 micron fluxes

LIRGS to z~1, ULIRGS to z~2

CCAT instrumentation workshop: Caltech 13 Dec 2006

Source populations for CCAT C+ spectroscopy

MIPS 24 mm surveys:

Use SED model and photometric redshifts to derive luminosity function at various redshifts (Papovich, Perez-Gonzalez, LeFloc'h, Egami, et al.)

MIPS 24 reaches out to z~1 for LIRGS, z~2 with ULIRGS

Egami, LeFloc'h et al measure ~1440 galaxies per square degree with log L > 11.25 at 1.0 < z < 1.2

According to a reasonable 850 micron redshift distribution based on e.g. Chapman et al. measurements (w/ recent $z\sim1$ additions) or Benson model, this redshift range should account for 5% of the total 850 micron sources at any given flux density.

This implies 3e4 total galaxies per sq deg with log L > 11.25 per sq deg -> *matched by 850 micron counts.*

So we have a z~1 population measured at both 24 and 850.

850 spans the redshift range with almost uniform selection, but shallow in L
 shows redshift range, extrapolate to lower- L

•24 is biased toward low-z (z~1), but deep in L -- approaching knee at z~1 LIRG

Source densities for C+ spectroscopy with CCAT

In the 350 micron window at redshift 1-1.2 (low-z half of the window), Density of Log L > 1e11 sources = 7.1 e4 x 0.2 x 0.24 = 3.4 e3 = **36 galaxies per square degree per 300 km/s spectral bin** = 1 source per 40,000 CCAT beams per spectral bin

Extrapolating to the 450 micron window (redshift 1.8-2.0 is low-z half of the window) using a Chapman or Benson redhift distribution. Density of Log L> 1e11 sources = 7.1e4 x 0.2 x 0.29 = 4.3 e3 = 62 galaxies per square degree per spectral bin = 1 source per 14,000 CCAT beams per spectral bin

Options for CCAT spectrometers

- Grating spectrometer is the best choice for point sources.
 - 1st order → octave of instantaneous bandwidth
 - Potential for 350, 450 micron windows simultaneously
 - Good efficiency
 - Only moderate resolution
 - Potential for multi-object capability further multiplies efficiency
- Fabry-Perot naturally accommodates spectral mapping at discrete (known) frequencies.
 - Offers potential for high-resolution (R~10,000) over modest fields
 - But scanning time results in sensitivity penalty, esp for searching
- Fourier transform spectrometer (FTS) couples the full band to a single detector.
 - Sensitivity penalty
- Heterodyne receivers provide the highest spectral resolution.
 - But suffer from quantum noise $NEP_{QN} \sim h\nu [\delta\nu]^{1/2} vs. NEP_{BG} \sim h\nu [n (n+1) \delta\nu]^{1/2}$
 - Also offer limited bandwidth:
 - 10 GHz IF bandwidth at 1 THz gives $v / \Delta v \sim$ 100

CCAT Imaging Fabry-Perot Interferometer

SPIFI demonstrates concept at JCMT & the South Pole

5x5 spatial array, two scanning FPs provide R up to 10,000 at 200-500 microns

SPIFI

60 mK ADR-cooled focal plane

CCAT instrumentation workshop: Caltech 13 Dec 2006

Scope of CCAT Imaging Fabry-Perot

CCAT -IFPI will be much larger than SPIFI due to the large throughput Limitation is beam divergence in the high-res FP.

 $D_{col} \sim 1.5 \lambda (R \times n_{beams})^{1/2}$

so $\Omega \sim D_{col}^4 / (1.5 \ \lambda \ R)^2$

		R=1000		R=10000		
wavelength	array	col. Bm.	sq deg	array	spacing	d locol
220.0	256	15.2	1.31E-02	44	18.33	2.23
330.0	196	20.0	1.73E-02	20	27.50	2.26
370.0	156	20.0	1.37E-02	16	30.83	2.27
430.0	116	20.1	1.03E-02	12	35.83	2.28
490.0	90	20.1	8.02E-03	8	40.83	2.12
650.0	51	20.1	4.53E-03	5	54.17	2.23
850.0	30	20.2	2.68E-03	3	70.83	2.25
1200.0	15	20.1	1.34E-03	1.5	100.00	<mark>_</mark> 2.25
				7		

11' x 11' field

Will require detailed optical design Field size driven by 20 cm beam, assumes no spatial oversampling

1-D field size for 20 cm beam

Highorder FP spacing (mm) w/ F=60 Order-sorter also requires collimated 2.2cm (or slow) beam

CCAT IFPI will be much larger than SPIFI due to the huge throughput

C+ Detection Rate: Comparison Between FP & Grating

Could a Fabry-Perot serve to select sources at specific redshift from a field ?

Fabry-Perot

Source detection rate = $dN / dz \propto \Omega$

dN / dz = 36 - 62 per square deg, per res el. = 1.7e-2 sq deg

Rate = 0.6-0.7

Grating Source detection rate = z_fraction x N_mos z_fraction = 0.3 (including 350 and 450) N_mos = ? (10-100) Rate = 0.3 x 10-100 ~FEW SOURCES PER HOUR

Most optimistic R=1000 FP at 350 microns: 200 x 200 = 4e4 beams or 1.7e-2 sq deg

Take 10 resolution element scan: Gives $1.7e-2 \times 36 \times 10 = 6$ LIRG+ sources In 10 hours observation. Doesn't look good, not enough volume due to finite z

Yes, but source densities are low enough that detection rate in the field will be low.

Broadband grating is faster if you can get a couple even a couple sources

Examples of submillimeter-wave echelle grating: ZEUS for the JCMT / APEX

Cornell -- Stacey, Haley-Dunsheath, Nikola

350, 450 μ m windows w/ R~1000-1500

CCAT instrumentation workshop: Caltech 13 Dec 2006

ZEUS Grating

Manufactured by Zumtobel Staff GmbH (Austria).

A new R~1000 echelle spectrometer for CCAT

Tilt	λ min	λ max	BW	R	slit	# pix on slit			
3rd order									
58 deg	439	485	9.7%	800					
54 deg	418	462	9.3%	822	5.8	2.08			
62 deg	456	504	11.0%	903					
4th order									
57 deg	330	356	7.1%	1100	4.3	1.44			
63 deg	350	377	8.2%	1245					
6th order									
56.5 deg	221.3	232.7	5.0%	1646	2.7	0.96			
7th order									
60.5 deg	198.7	207.4	4.3%	1920	2.7	0.96			

Design: Grating 816 micron pitch

Assuming 128 spectral element array

-- e.g. 0.86 mm pixels -- f/2.5 spectrometer, slightly oversampled Angular deviation off the grating 18 deg total.

collimator must be oversized by 12 cm !

--> 30 cm diameter collimator

--> grating 30 cm by 40 cm, to accommodate spatial throughput

CCAT echelle will be large

So grating and collimator are a large fraction of 1 meter in all dimensions -- 1.5-2 times larger than ZEUS

Reimaging optics size will depend on the size of the slit, but also grows relative to ZEUS: --scales as telescope f# x #of beams: Relative to ZEUS, CCAT echelle will have $8/12 \times 128/32 = 2.7$ times larger reimaging optics.

• Requires 35 cm (+ overhead) window if reimaged from telescope focus inside cryostat (but can be shaped like a slit)

Optics envelope inside cryostat approaching 1 meter in all dimensions.

Large but doable.

True broadband spectroscopy in the submillimeter: Z-Spec, a 1st order grating covering 190-305 GHz.

CCAT instrumentation workshop: Caltech 13 Dec 2006

Matt Bradford

True Broadband Spectroscopy in the Submillimeter: Z-Spec, a 1st order grating covering 190-305 GHz

Z-Spec approaching its photon-noise limits at the CSO

ULIRG spectroscopy for CO, isotopes, density tracers.

Bret Naylor Ph.D. dissertation

High-redshift observations coming this winter.

A similar device could cover the entire 350 and 450 μm windows simultaneously at R~800

Both waveguide and free-space echelle grating spectrometers could accommodate a mulit-object front end.

Hughes et al. SCUBA HDF North
Remember CCAT continuum surveys at 350, 450 will go much deeper
Will be with URG L galaxies in this 5.6 sc

• Will be ~110 LIRG+ galaxies in this 5.6 sq arcmin field.

Source density of LIRG+ galaxies: 71,000 per square degree = 1 every 180 sq arcsec = 1 every 10 CCAT 350 / 450 mm beams.

With slit of 1 x 30 beams: Could position slit to get at least 2, perhaps 3 sources with no additional effort except field rotation.

Ideal system:

- 10-50 feeds patrolling 4 sq arcmin field.
- 8 x 8 cm in the native f/8 telescope focus.
- feeding slit of echelle or multiple
 Z-Spec-like devices
- Mirror arms or flexible waveguide

Flexible Dielectric Waveguide --200 μm polyethlyene monofilament

Fig. 1. Spatial distribution of the z-direction Poynting vector about a 200 μ m diameter ($a = 100 \mu$ m) PE wire at frequencies of (a) 300, (b) 500, (c) 700, and (d) 900 GHz. The PE wire is assumed to be surrounded with air.

$$\alpha_{f} = \left| \frac{1}{P} \frac{\mathrm{d}P}{\mathrm{d}z} \right| = \frac{\sigma \int |E|^{2} \mathrm{d}\tau}{\left| \int S_{z} \mathrm{d}\tau \right|},$$

Fig. 2. (a) Measured fiber attenuation constant of the 200 μ m diameter PE wire in the frequency range 310–360 GHz. For comparison, the calculated fiber attenuation constant of an ideal THz fiber, whose absorption constant α is assumed to be 1 cm⁻¹ in this frequency range, is shown. (b) Comparison of measured and calculated coupling efficiency of the PE wire in the frequency range 310–360 GHz.

Chen et al. 2006

Tradeoff between guiding and loss less field inside -- lower loss but cannot bend sharply. NEED BENDING MEASUREMENTS

Flexible low-loss waveguide -concentrating the field energy into air

Fig. 1. Geometries of the considered dielectric waveguide structures: (a) A split rectangular waveguide and (b) a tube waveguide.

Fig. 2. Distribution of the normalized scalar *z*-component of the time-averaged Poynting vector S_z over a linear color scale in the cross section area of the waveguides. (a) Float-zone silicon split rectangular waveguide at f = 0.7 THz with $w = 54 \mu$ m, $h = 90 \mu$ m and $g = 18 \mu$ m. (b) Fused silica tube waveguide at f = 0.5 THz with $R = 181.5 \mu$ m and $r = 27 \mu$ m.

Nagel et al: Split rectangular waveguide offers compromise of low loss, good confinement. But no measurements yet.

Flexible Dielectric Waveguides

Specifications

- Number minimum of ten 10-cm seems quite feasible
- Bend radius of few cm seems feasible
- Acceptable loss push toward short λ s, waveguide loss not dominant: T_{sky}(τ 350µm=0.25) = 70 K, T_{tel} = 20 K, T_{auide}(trans=60%) = 95 K
- PTFE remains flexible at low temperatures!

Manufacture

- Vendors Zeus, custom extrusion houses
- Standard sizes down to 710 μm
- Custom fabrication cost -- \$1,200 per run of 2500 ft (underestimate?) *fishing anyone?*

CU Seed Grant Proposal (Submitted yesterday)

- Funds -- \$50k, 1 yr
- Collaboration: CU APS, EE, NIST, Colo. School of Mines
- Test setup: room temp diode detector; network analyzer 400 GHz, *900 GHz*; cryo with TESs 850 µm; differential vs. metal
 Test variables: HDPE vs. PTFE; 350 & 850 µm; room temp,

cryogenic loss; loss vs. bend radius; loss after many bends

Simulations

J. Glenn

Detectors for CCAT spectroscopy --TES or MKID technology being developed for flight

Want ~30 kpixel array for CCAT spectrometers.

Sensitive detectors are under development for lowbackground flight experiments.

Requirements for R=1000 at $\lambda <$ 1 mm with the CCAT are of order 10⁻¹⁷ W Hz^{-1/2}.

Achievable with existing devices.

TES MUX can work equally well at these NEPs -- development is similar to that of SW CAM, SCUBA-2.

R~10,000 at the long wavelengths starts to become a relevant testbed for SAFIR / SPICA detectors.

4 K instrument: $A\Omega = 3 \text{ mm}^2$, $\Delta\lambda/\lambda = 50 \%$, $\varepsilon = 10 \%$ Matt Bradford 34

CCAT Spectrometer Telescope Requirements

Very similar to cameras:

- 1-2 tons of cryostat + electronics
- 5-10 kW of electrical power
- More modest field sizes -- few square arcmin
- Similar data rates.

BUT GRATING SPECTROMETER WOULD LIKE A CHOPPING SECONDARY

- Slit spectrometer needs field or instrument rotation capability
 - MOSSCCAT may be able to track sources (but not chop!)

CCAT Spectrometer Budget

Option 1: Use modestly-upgraded Z-Spec and ZEUS

- Labor: 10 FTE = \$1.5 M,
- Dual Z-Spec grating + detectors + electronics (NTD): \$0.5 M
- ADR + array for for ZEUS: \$0.5 M
- Total: \$2.5 M for upgraded Z-Spec & ZEUS.
- Option 2: Dedicated Multi-Object CCAT Spectrometer
 - 30 kpix TES array + MUX + electronics: \$6.7 M (NIST -- estimate from SW CAM camera)
 - Labor: 27 FTE: \$4 M, includes spectrometer optics fabrication
 - Cryostat, pulse tube, ADR or dilution fridge: \$0.5 M
 - Multi-object front end development + fabrication: \$2.0 M
 - Total: \$13.2 M

Conclusions

- Tens of thousands to millions of galaxies will be discovered in far-IR to millimeter continuum surveys in the next 15 years.
- Spectroscopic follow-up will be the bottleneck.
- CCAT can be competitive with ALMA for spectral surveying in the short submillimeter.
 - a multi-object broadband grating can exceed ALMA for spectral-survey follow-up of LIRG+ galaxies.
- Galaxies w/L > 10¹¹ have ~constant C+ flux and are detectable with CCAT spectrograph.
 - \sim 1 hour in the 350 micron band
 - ~4 hours in the 450 micron band
 - together these bands will capture ~30% of all the 850 μm -selected sources
- Existing spectrographs with modest upgrades can reach close to the fundamental photon-noise limits of CCAT, but limited
- Ideal CCAT spectrometer is a multi-object low-order grating.
 - We CAN get redshifts: few to couple tens per hour.

Flexible Dielectric Waveguides

Previous Work

• System advantages: simple, compact, elegant • Challenges: absorption, high-frequency fabrication

Options

1. Powder-filled circular waveguides

- Tested at 10 (X-band) & 94 GHz (W-band)
- PTFE cladding, 21-23 AWG (150 µm walls)
- Trans-Tech MCT-40 magnesium-calcium titanate, D-30 nickel-aluminum titanate, D-8512 barium titanate cores; grains ≤ 43 µm
- D-30 loss best: 25% over 10 cm
- Tapers/coupling characterized
- Unmeasurably small loss induced by bend radii < 4 cm

2. Monofilament – Best choice

- •HDPE waveguide tested up to 300 GHz
- •Rectangular: 560 µm x 280 µm
- •Loss 19% over 10 cm; extrapolated to 35% @ 600 GHz
- Tapered coupling well thought out

J. Glenn

From E. LeFloc'h **ULIRG** evolution with redshift SPICA workshop Nov 06

