
CCAT LWCam

Sunil Golwala

with help from German Cortes, Jason Glenn, Jonas Zmuidzinas

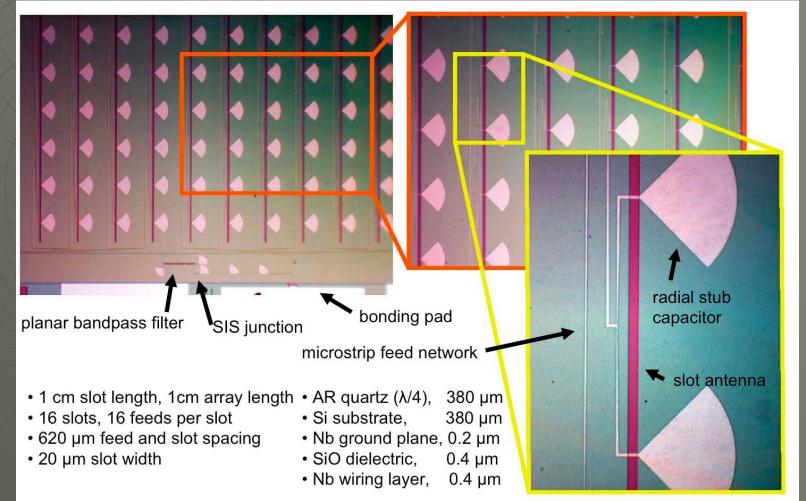
and the MKID DemoCam gang: Peter Day, Rick LeDuc, Shwetank Kumar, Ben Mazin, James Schlaerth, Tasos Vayonakis

Outline

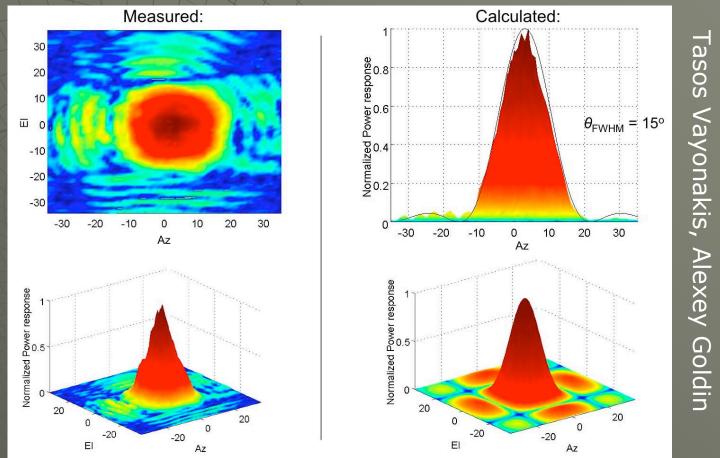
- Instrument Design Goals
- Strawman Design
- Detector Options
- Weight, power, manpower, cost

Instrument Design Criteria

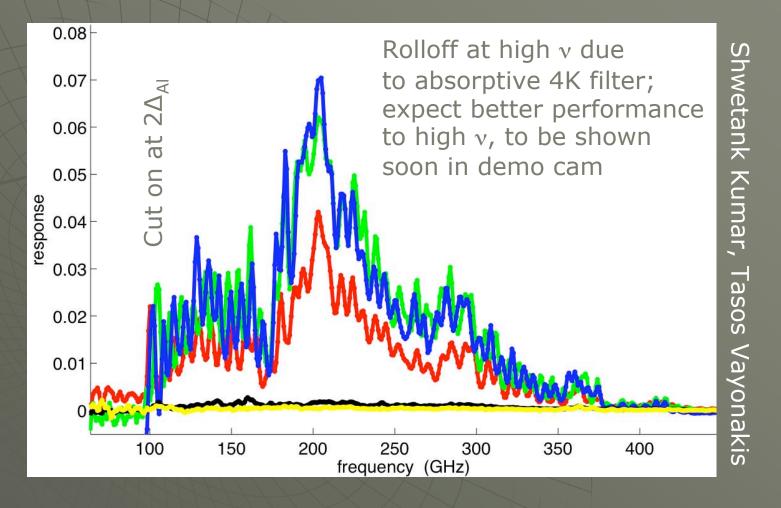
- Maximal use of FoV
 - esp.: try to design optics and dewar to allow it, even if we can't fill it all right now
- Simultaneous multiband coverage
 - Most LWCam science drivers require multiband SEDs
 - For some sources, sky noise removal may be greatly enhanced (need sky ~ orthogonal to signal)
 - Observatory efficiency!
- Optical train with low optical loading
 - Atmosphere is >90% transmissive at > 1 mm under median conditions, don't want telescope to limit us!
 - < 10% total (including telescope), < 5% desired


Instrument Design Goals

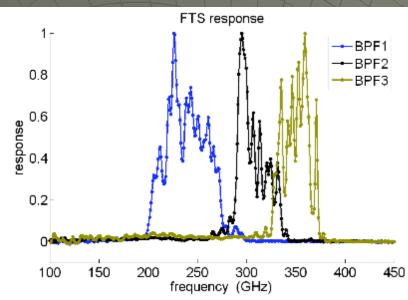
- Antenna-Coupled Architecture
 - Clearly can't do feedhorns at pixels counts we want
 - Bare absorbers are non-optimal
 - Single array doesn't work well across a wide band (pixel sizes, backshort distance)
 - No known way to cosituate multiple arrays at different colors
 - Single-pol antenna-coupled design offers "simple" way to cover multiple bands with varying pixel sizes simultaneously
- Multiplexable detectors
 - A must!

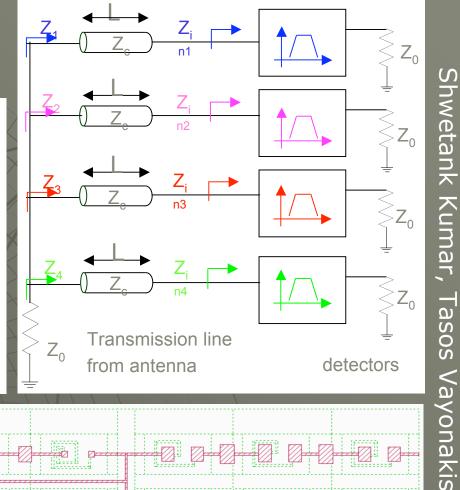

Caltech-JPL are developing phased-array antennae

Tasos Vayonakis, Alexey Goldin


100 GHz beam maps using SIS detector; comparable maps expected soon from demo cam (initial maps had problems due to optical coupling to bare resonators)

CCAT LWCam, S. Golwala, CCAT Instrumentation Workshop, 2006/12/13


Wide bandwidth



CCAT LWCam, S. Golwala, CCAT Instrumentation Workshop, 2006/12/13

 Colors defined by in-line bandpass filters

CCAT LWCam, S. Golwala, CCAT Instrumentation Workshop, 2006/12/13

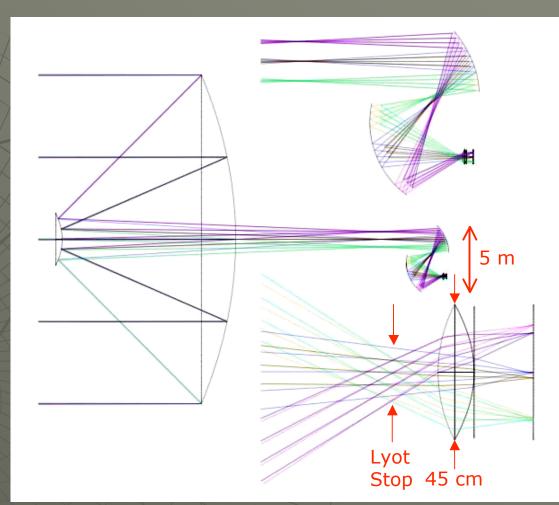
- Phased array is sensitive to a single polarization for √ε·(tap spacing) < λ < slot length
 (ε = substrate dielectric constant = 11.5 for silicon)
- Nominal design for 740 μm to 2 mm
 - Slots of length 8 mm with 64 taps (spaced at 125 μ m)
 - 64 slots across a single 2 mm pixel
- Bands are separated using microstrip bandpass filters placed at the ends of a binary summing tree
- Multiscale pixellization to match pixel size to λ
 - All 64^2 = 4096 slots summed for λ = 2 mm band: 2.3 · f· λ pixel
 - Subset of 8^2 = 64 slots summed for λ = 740 µm band: 0.8 f λ pixel
 - Each 9.2 mm square is one pixel at $\lambda = 2$ mm and $8^2 = 64$ pixels at $\lambda = 740 \ \mu m$
 - 2.3·f· λ at 2 mm to maximize beam control/throughput/minimize loading
 - 0.8·f· λ at 740 µm to maximize sampling and angular resolution

Pixel Numerology

L = low-resolution tileBand Δv Pixel Number of Spatial H = high-resolution tile GHZ (GHz) Size Pixels 20 arcmin f·λ (μm) 150 30 2.3 $16 \text{ tiles} \times 64 = 1024$ (2000)3.2 40 $16 \text{ tiles} \times 64 = 1024$ 220 (1400)275 21 $16 \text{ tiles} \times 256 = 4096$ 50 H H (1100)40 $4 \text{ tiles} \times 4096 = 16384$ 350 0.7 2.8 $12 \text{ tiles} \times 256 = 3072$ н (870)Н -14 405 30 0.8 $4 \text{ tiles} \times 4096 = 16384$ (740)3.2 $12 \text{ tiles} \times 256 = 3072$ ſ L 45,056 detectors Total

At f/2, 1 tile is approximately 74 mm across, a good fit for 4" wafer processing. Focal plane is 30 cm across, a "reasonable" size.

10 arcmin


LWCam Optical Design

- Reimaging optics: 2 ellipsoidals + 1 cold lens to reduce telescope f/8 to f/2 for array
 - Want at least one warm focusing reimaging optic to define image of primary
 - Use two conjugate ellipsoids instead of one to partially cancel off-axis distortions
 - Cold lens provides final reduction in f/# to match array

Optical Layout

- Off-axis ellipsoids deliver Strehl ratios > 90% over the 20' FOV excepting 2 extreme corners
- Image brought to appropriate f/2 focus by cold polyethylene lens (45 cm diameter)
- Modest 20 cm Lyot stop and 40 cm dewar entrance window
- Dewar length ~ 1 m

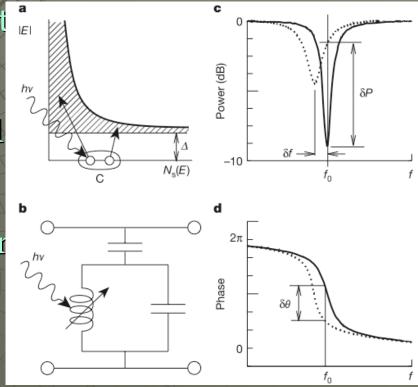
LWCam Optical Design

Challenges

- Strehl ratios still worrisome vis-a-vis beam control
- 15% field distortion at edge of FoV
- Big optics, 2-2.5 m! It's a fundamental A Ω problem:
 - \diamond 20' FoV and 25-m telescope -> A Ω = 13000 mm²
 - To keep the reimaging optics small, you end up with big offaxis angles of incidence, which screw up image quality
 - Multiple windows and optical trains in a single camera? Would make the system more "lenslike".
- Antireflection coatings
 - FP, transmissive optics must be AR coated for wide bandwidth
 - Possibilities: plastic laminates, DRIE structures in Si

Detectors

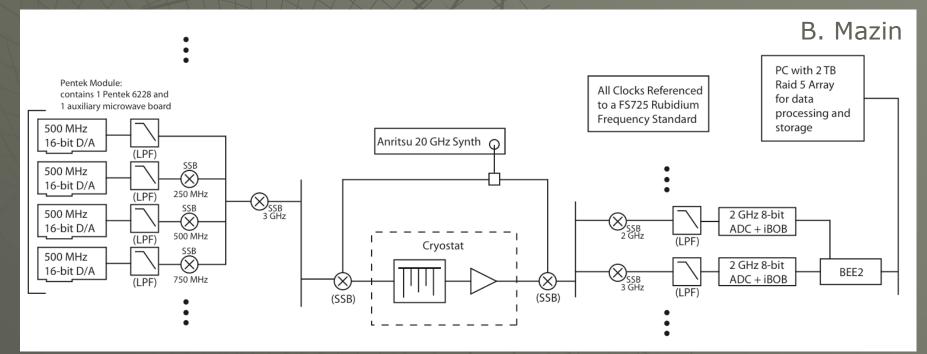
CCAT


- Only reasonable candidates are:
 - Superconducting transition-edge sensors (TESs)
 - Microwave kinetic inductance detectors (MKIDs)
- Pros and Cons
 - Sensitivity: currently TES, but MKIDs progressing
 - Degradation under optical loading: slight advantage to MKIDs
 - Fabrication: Advantage MKIDs
 - Multiplexing: Advantage MKIDs (in principle), TESs more advanced in practice to date
 - Cold electronics power dissipation: Advantage TESs
 - Microphonics Susceptibility: Advantage MKIDs
 - Magnetic Field Susceptibility: Advantage MKIDs
- Antenna-coupled TESs and MKIDs both under development at Caltech/JPL. Next year will provide lots of new information and progress.
- ◆ TESs: see Holland, Hilton, and Battistelli talks

MKIDs

Microwave Kinetic Inductance Detectors

- Kinetic inductance: inertia of Cooper pair condensate in AC EM field; monitor quasiparticle density via KI. Also resistive component due to dissipation in QPsDay
- Invented and demonstrat by Day, LeDuc, Mazin, Zmuidzinas
- Readout: monitor L (and via S₂₁.
- Very natural frequencydomain multiplexing usir 1/4-wave resonators (LC notch circuit)



MKIDs Readout

Software-Defined Radio

- Digitally generate frequency comb, block upconvert and sum
- Pass into cryostat, through detector array and HEMT, and out
- Block downconvert, digitize, and IQ mix to recover $S_{21}(t)$
- Lots of commercial/EE-driven hardware already in existence

Weight

- Comparable SPIDER/BICEP2 wet (no-LN) cryostat is ~150 kg
- Assume 10 kg/m² mirror mass based on primary mirror mass estimates, so 100 kg in mirrors?
- Cryocooler head: 10-20 kg
- Support structure: comparable to dewar/mirrors?
- ♦ 500 kg lower limit, 1000 kg guess at upper limit

Power Consumption

- Cryocooler: 5-10 kW
- Readout:
 - TES
 - Current SCUBA2 design: 150 W/1280 pixels. No changes \rightarrow 5 kW.
 - Must increase density. Would need 35 SCUBA2 style crates! (SCUBA2 uses 8).
 - MKIDs
 - ◆ 600 detectors/2 GHz BW in each BEE2 card
 - ◆ 75 BEE2 cards for 45000-detector array
 - ~300W per BEE2 card (FPGAs) + 100W for DACs, ADCs, up and downconversion → 22 kW
 - Xilinx Virtex-5 vs. Virtex-II Pro: x2 lower consumption. Will improve!

Manpower

- Separable subtasks/manpower
 - Array design: 1 student
 - Optical design, window & AR coating development/fab: 1 student, 0.25 engineer
 - Readout: 1 engineer, 1 pd, 1 student
 - Cryo, dewar, system-level design: 1 pd, 1 student, 0.75 engineer
 - Observation simulator and analysis software: 1 pd, 1 student, 1 software engineer
 - Project manager: utter necessity to make up for distracted PIs

Array Cost

CCAI

- Array fab: \$2M total
 - Basis: \$200k/array costed for engineering and science arrays for 2400-detector CSO MKIDCam
 - Assume JPL internal and Moore foundation funds pay for development and demo of multi-scale design
 - Assume \$200k/array for two eng. arrays, \$100k/array in production mode: \$2M total

Cryostat and Optics Cost

Cryostat: \$400k total

- \$200k for very nice Redstone BICEP2 cryostat (wet with VCS, maybe save with dry dewar)
- \$50k for cryocooler
- \$50k for sub-K cooler
- \$100k for internal structure machining (2000 shop hrs = 1 man-year)
- Optics: \$200k total
 - Reflective optics and mechanical structure: \$100k
 - Transmissive optics including coatings: \$100k (due to cost of Si material and DRIE)

Readout Cost

- Readout: \$2M
 - For CSO MKIDCam, we costed \$250k/2400 channels.
 - Correcting for items that don't need to be duplicated gives \$4M!
 - We will have to depend on Moore's law:
 - Bulk of cost is in DAC, ADC, and digital mixer (BEE2)
 - BEE3 expected in 2007 (Virtex-5 FPGAs)
 - DACs and ADCs will also speed up and decrease in cost
 - Cost cap scheme:
 - \diamond 2/3 of channels are in the central 740/870 µm channels
 - Another 2/9 are in the outer 12 tiles
 - Begin with scaled-down system substantially below \$2M, design in upgrades to be implemented when cost allows

Manpower Cost

- Manpower: \$5M
 - Assumptions:
 - Fab accounts -> no overhead (benefits included)
 - ♦ 5 year build
 - 5 PI summer salary: \$25k x 5 x 5 = \$625k
 - 3 PD: \$70k x 5 x 3 = \$1M
 - 5 grad: $40k \times 5 \times 5 = 1M$
 - 3 eng: \$100k x 5 x 3 = \$1.5M
 - Project manager: \$150k x 5 = \$750k

Budget Summary

Summary

- Arrays: \$2M
- Cryo: \$400k
- Optics: \$200k
- Readout: \$2M
- Manpower: \$5M
- Shipping and on-site commissioning: \$100k?
- Total: \$9.7M
- Worries:
 - Inflation in array cost due to fab difficulties/reliability
 - "Marching army" cost of delays: 1 year = \$1M
 - What if we can't grow out of readout cost problem
- Possible savings:
 - Shared engineering support with SWCam
 - Tail off eng. staff as project moves through build stage
 - Shared software development between SWCam and LWCam

CCAT LWCam, S. Golwala, CCAT Instrumentation Workshop, 2006/12/13

LWCam Future Upgrades

- Upgrade paths:
 - Cover the entire FoV with Nyquist sampled pixels at 740 and 865 μm a total of 137,216 pixels!
 - Or, more modestly, upgrade from $3f \cdot \lambda$ pixels to $1.5f \cdot \lambda$ pixels: "only" 63,488 pixels total
 - Cover the entire FoV with Nyquist sampled pixels at 620 μm resulting in 262,144 pixels in addition to the 137,216 pixels in the first upgrade
 - Or, more modestly, employ "two tier" system for an addition of 77,824 or 114,688 pixels total
 - Extension to 620 µm will be challenging due to issues with SQUID packing density (TES), and heat-loads with HEMTs (MKID)
 - There may be issues with image quality at the shorter wavelengths for the larger FoV
 - 620 μ m band already covered with SWCam...