Wayne Holland UK ATC, Royal Observatory Edinburgh

COMMON-USER

ARRAY - 2

BA D

E

SUBMILLIMETRE

SCUBA-2 in a nutshell

• Two focal planes, working simultaneously at 450 and 850µm

- Each focal plane has ~5000 pixels in 4 sub-arrays (TES with in-focal plane MUX)
- 850 fully-samples the sky; 450 under-samples by a factor of 2
- Field-of-view on sky is $\sim 50~{\rm sq}{\rm -}$ arcmin at both wavebands
- Mapping speeds some 1000 times faster than SCUBA...

Large Format Arrays

SCUBA-2 450µm prototype array mounted in focal plane unit

370

Status

- Instrument is now essentially complete – at delivery standard
- Testing is underway of science-grade sub-arrays – one for each wavelength
- Delivery expected to JCMT in April 2007
- Survey programme approved and due to start in summer 2007

SCUBA-2 under test (today...)

Optical layout of SCUBA-2 on JCMT

SCUBA-2 on JCMT

Left Nasymth - Before

Left Nasymth - After

Cryostat Frame

Cryostat Frame Mounted

Getting SCUBA-2 into position ...

SCUBA-2 on CCAT: Design criteria

 Has to match to CCAT optics, specifically to the f/8 Nasmyth focus

- Assume no changes to the SCUBA-2 cryostat: window and filters are same, cold mirrors and cold stop not altered
- Can change (warm) re-imaging optics but keep mirrors of order 1m class or smaller
- What field-of-view is possible?

Strehl ratios

STREHL RATIO

SCUBA-2 properties/services

Dimensions: Cryostat 2.3 \times 1.7 \times 2.1m (pumped volume of 5m³)

Weight: Cryostat (including electronics) 3400kg

Power consumption: ~45kW in total

Communications: Fibre optics from electronics to RT Linux PCs; RS232 control of mechanisms

Cryogens: 600 litres of LN for pre-cool; ~5 litres of LN per day during operation

Services: Two electronics service racks; DR control unit; 3 (water cooled) compressors for PTCs; backing pump for turbo; compressed air for gate-valves

Dilution fridge control

SCUBA-2 pixel scales on CCAT

	Number of pixels	Arcsecs/ pixel	Pixel size (Fλ)	Field-of-view (sq-arcmin)
450µm (JCMT)	5120	6.0	0.9	51.3
850µm (JCMT)	5120	6.0	0.5	51.3
450µm	5120	4.5	1.2	30
850µm	5120	4.5	0.6	30

Sensitivities

 5σ , 1-hour sensitivities for various instruments

Dust Mass Sensitivity (per pixel)

For dust at >30K and objects z<2 emission has a spectral index slope of \sim 2+ β

Relative to SCUBA at 850µm

Dust Mass Sensitivity (per pixel)

For dust at >30K and objects z<2 emission has a spectral index slope of \sim 2+ β

Relative to SCUBA at 850µm

Mapping Speed

Large area mapping speeds assuming the same dust mass sensitivity (relative to SCUBA 850)

Mapping Speed

Large area mapping speeds assuming the same dust mass sensitivity (relative to SCUBA 850)

Field Mapping

Flux limit versus area mapped assuming 10sec/pointing (no overheads)

Summary

• It is possible to interface SCUBA-2 to CCAT giving an ${\sim}30$ sq-arcmin field-of-view

- This is possible by just changing two of the re-imaging mirrors in the current JCMT/SCUBA-2 optical layout
- Infrastructure needs could be minimised by using the existing JCMT mounting frames, lines/compressors etc
- SCUBA-2 would provide CCAT with well-tested imaging instrument at 450 and 850µm from Day One