

Spectroscopy With CCAT

Gary Fuller University Of Manchester

Summary

- ALMA more sensitive
- ALMA has higher spatial resolution
- CCAT: large areas/structures and finder scope for ALMA
 - Wide fields
 - Array receivers
 - Wide bands (>10 GHz, ideally 0.1 km/s resolution)
 - Combination essential to explore the highest frequency windows
 - Zero spacing data
- Lines probe a wide range of unique environments and conditions
- Role for spectrophotometry?

Mapping

- CCAT twice the diameter of an ALMA dish
 - half the beam size
 - Need 4x pointings to map the same area
 - ALMA has 10 times the area
 - ALMA 40x faster for mapping than CCAT with a single pixel to reach a given rms in T.
 - BUT with >40 pixels CCAT would be faster
 - Small source or known position ALMA
 - Extended source or unknown position CCAT with array receiver
 - Spectral coverage CCAT (?)

Wide Field Science

- Blind Z surveys
- Local galaxies
 - Interaction regions
 - Identifying clouds complexes
 - PDRs
- Large scale structure in clouds
 - Outflows and their effects
 - Triggers for star formation
 - PDRs
 - Large scale flows and velocity structure
 - Clump populations
 - Blind surveys for cold depleted regions
- Molecular inventory of sources

CO(7-6) and [CI] from NGC 4038/4039

- [CI] Line intensity essentially constant
- CO(7 → 6) greatly enhanced, indicating starburst
- Strong mid-J CO emission reflects influence of OB stars (Isaak et al. In prep)

8" pixels ~ ALMA primary beam

JCMT SLS HCN 3-2, C¹⁸O 3-2

1° == 5.5 pc

Perseus B1 C¹⁸O J=1-0

(Hatchell et al.)

HH288 (IRAM)

Lines selective to conditions

MANCHESTER 607 to 725 GHz Survey

First results from CONDOR on Apex

From hot, dense gas: 300-500K, $3x10^{5}-5x10^{7}$ cm⁻³

UK Heterodyne Array Experience

- HARP-B/ACSIS MRAO/ATC
 - 345 GHz
 - 16 pixels
 - 2GHz bandwidth
- OMAR Manchester/UMass
 - 230 GHz
 - 16 pixels x 2 polarizations
 - 8 GHz bandwidth

Questions & Requirements

- Current CCAT plans for heterodyne receivers?
 - Frequency band?
 - Requirements:
 - >10 of pixels
 - >8 GHz
 - 0.1 km/s channels (small scale turbulence/thermal lines)

Summary

- CCAT for large structures/areas finder scope for ALMA
 - Wide fields
 - Wide bands (>10 GHz, ideally 0.1 km/s resolution)
 - Combination essential to explore the highest frequency windows
 - Zero spacing data
 - Lines probe a range of conditions and a range of physics