Cornell Caltech Atacama Telescope (CCAT)

Feasibility/Concept Design Review

Presentations

January 2006

Cornell University California Institute of Technology Jet Propulsion Laboratory

CCAT Feasibility/Concept Study Review

Tuesday, January 17, 2006

8:30 AM 8:40 AM	Welcoming Remarks The Vision of CCAT Overview of Study Results	Thomas Tombrello Riccardo Giovanelli	0:10
8:40 AM	The Vision of CCAT Overview of Study Results	Riccardo Giovanelli	0.10
0.50 ANA	Overview of Study Results		0:10
8.30 AM	overview of Study Results	Thomas Sebring	0:15
9:05 AM	CCAT Science & Requirements	Terry Herter/Jonas Zmuidzinas	0:35
9:40 AM	CCAT Requirements Summary	Simon Radford	0:10
9:50 AM	Optical Design & Analysis	German Cortes	0:30
10:20 AM	Break		0:10
10:30 AM	Facilities Concepts	José Teran, M3 Engineering	0:30
11:00 AM	Dome Concept	Nathan Loewen, AMEC	0:30
11:30 AM	Telescope Mount Concept	Dave Finley/Ed Reese, VRSI	0:30
12:00 PM	Lunch		0:45
12:45 PM	Primary Mirror Overview	Thomas Sebring	0:30
1:15 PM	Systems Engineering & Analysis	David Woody	0:30
1:45 PM	CFRP Panel Study	Bob Romeo, CMA Inc.	0:30
2:15 PM	Borosilicate Panel Study	David Strafford, ITT	0:30
2:45 PM	Telescope Calibration & Alignment	Gene Serabyn	0:30
3:15 PM	Break	-	0:15
3:30 PM	Laser Alignment System	Shanti Rao	0:30
4:00 PM	Hartmann Alignment Sensing	Thomas Sebring	0:10
4:10 PM	Wavefront Sensing Guider	Jamie Lloyd	0:10
4:20 PM	M2 & M3 Systems	Mike Cash, CSA Engineering	0:25
4:45 PM	CCAT Instrumentation	Gordon Stacey	0:30
5:15 PM	Electronics & Controls	Tom Sebring/Simon Radford	0:15
5:30 PM	Adjourn	C C	
6:00 PM	Reception		1:30
Wednesday, Ja	nuary 18, 2006		
8:00 AM	Continental Breakfast & Chat		0:15
8:15 AM	Site Selection and Testing	Simon Radford	0:20
8:35 AM	Operating in Chile	Riccardo Giovanelli	0:15
8:50 AM	Integration & Commissioning	Thomas Sebring	0:20
9:10 AM	Operations Planning	Simon Radford	0:20
9:30 AM	Project Management Plan	Thomas Sebring	0:20
9:50 AM	Break		0:10
E	Executive Session: Review Committee, Ad	lministration, & CCAT Management	
10:00 AM	Preliminary Cost Estimate	Thomas Sebring	0:30
10:30 AM	Discussion		0:30
11:00 AM	Review Committee Caucus		1:00
12:00 PM	Lunch (provided for Review Comm	ittee)	1:00
1:00 PM	Committee Debrief		1:00
2:00 PM	Adjourn		

Meetings both days will be at: The Pasadena Sheraton

5.A facility of huge synergy with, and enabler to ALMA

CCAT will match ALMA in point source, continuum sensitivity at 500 μ m and will be many orders of magnitude faster as a survey instrument. Although CCAT's beam will be a few arcsec, ALMA will have 100 times the spatial resolution.

→ ideal complementarity

Scientists with favored access to CCAT will have exceptional leverage arm for ALMA follow-up science.

Foresee joint, large scale projects coordinated between the two facilities.

CCAT Feasibility/Concept Study Review 17-18 January 2006

• Spring 2003 : Partnership initiated	
• October 2003: Workshop in Pasadena	CCAT
 Feb 2004: MOU signed by Caltech, JPL and Cornell 	
 Late 2004: Project Office established, PM, DPM hired, Study Phase pace accelerates 	
 July 2005: Study Phase Midterm Review 	
• Early 2006: Preliminary CDR	
 2006-2007: Detailed Conceptual Design finalize Site Selection 	
• 2007-2012: Engineering, Construction and First Light	

<section-header><section-header><image><image><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

CCAT Feasibility/Concept Study Review 17-18 January 2006

CCAT Science - II

What is the nature of the dark matter and dark energy?

- CCAT will image hundreds of clusters of galaxies selected from current and planned southern-hemisphere cluster searches (via the Sunyaev-Zeldovich Effect).
- CCAT imaging will be important in understanding how clusters form and evolve, and in interpretation and calibration of the survey data to constrain crucial cosmological parameters ($\Omega_{\rm M}$, Ω_{Λ} , dark energy equation of state) independently of other techniques (Type Ia supernova and (direct) CMB measurements).

How do stars form?

- CCAT will survey molecular clouds in our Galaxy to detect the (cold) cores that collapse to form stars, providing for the first time a complete survey of the star formation process down to very low masses.
- In nearby molecular clouds, CCAT will be able to detect cold cores down to masses well below that of the lowest mass stars $(0.08 \ M_{\odot})$.

Selected (Key) Facility Drivers

- Field-of-view (5' x 5' initially, up to 20' across eventually)
 - The major role of CCAT will be its unchallenged speed for moderateresolution wide-field surveys
 - CCAT strongly complements ALMA (which will do follow-up)

Chopping/Scanning

- Bolometer arrays require modulating the signal through chopping and/or scanning the telescope
- For chopping, this must be done at the secondary (~ 1' at ~ 1Hz)
- Scanning requires moderately large accelerations for reasonable efficiency (~ 0.2 deg/sec²) [R];
- **Pointing & Guiding**
 - For spectrographs require placing to a fraction of slit width
 - And guiding to maintain spectrophotometric accuracy
 - => 0.61" [R] and 0.35" [G] arcsec pointing/guiding (1D rms)
- Precipitable Water Vapor
 - Provide significant observing time at 350/450 μm

			Tir	ne Av	aila	ble to	Obser	ve		A
Ba	und	Time	Ref.	Saireca	abur (5	500 m)	ALM	A (505	50 m)	CCAT
		to CL	PWV	Time Avai	ilable	CL fields	Time Avai	lable	CL fields	
[µm]	[GHz]	[hr]	[mm]	[hr yr ⁻¹]	[%]	[yr ⁻¹]	[hr yr ⁻¹]	[%]	[yr ⁻¹]	
200	1500	1248	0.26	281			84			
350	857	0.86	0.47	1936	22	2244	1084	12	1257	
620	484	1.14	0.64	716	8	629	723	8	634	
740	405	0.43	0.75	639	17	1488	690	8	1607	
865	347	0.28	0.86	1223	14	4413	1205	14	4348	
1400	214	0.30	1.00	1517	<u>(</u> 17)	5093	1299	15	4361	
Tir	ne (PWV	′ < 1.1 m	m)	6312	72	KHT	5084	58		

Number of hours/year (round the clock) available for observing at a given λ (PWV) for Sairecabur (5500 m) vs. the ALMA region (5050 m). "CL fields" is the number of fields that can be observed to the confusion limit over a year. The "Total Time" is the sum of available hours and represents all time (day or night) with PWV < 1.1 mm. Because observations at some wavelengths require similar conditions, i.e., 350 μ m and 450 μ m, they share a common range. Note that at CSO, 350 μ m observations are done when PWV < 0.9 mm.

			Time to	o Comp	plete Pr	ogram	S
Ва	and	PWV	Time Av	ailable	Science	Time to C	Complete
λ	ν		Sairecabur (5500 m)	ALMA (5050 m)	Program Time	Sairecabur (5500 m)	ALMA (5050 m)
(µm)	(GHz)	(mm)	(hr yr ⁻¹)	(hr yr ⁻¹)	(hr)	(yrs)	(yrs)
200	1500	0.26	281	84	204	0.7	2.4
350	857	0.47	1936	1084	4881	2.5	4.5
620	484	0.64	716	723	5832	8.1	8.1
740	405	0.75	639	690	256	0.4	0.4
865	347	0.86	1223	1205	1128	0.9	0.9
1400	214	1.00	1517	1299	350	0.2	0.3

"Science program time" is the total time to perform the baseline science for camera observations only – this does not include spectroscopic followup. This is the on-sky integration time needed according to best estimates of the sensitivity and does not include observing overhead or other inefficiencies.

	Radiome			
	Requirement	Goal	remark	
Wavelength	350 - 1400	200 - 2500	μm	
Aperture	25 m			
Field of view	10'	20'		
Half WFE	< 12.5 µm	< 9.5 µm	rms	
Site condns.	< 1.0 mm	< 0.7 mm	median pwv	
Polarization	0.2%	0.05%	after cal.	
E	<10% @ >300 µm	< 5% @ >800 µm		
Emissivity	<20% @ 200 µm			
CCAT Feasibility/Concept Stu	dy Review 17-18 January 2006			

P	ointing and S	canning	CCAT
	Requirement	Goal	remark
Pntg, blind	2"	0.5"	rms
Pntg, offset	0.3"	0.2"	within 1°
Pntg, repeat.	0.3"	0.2"	rms, 1 hour
Scanning rate	0.2° s ⁻¹	1° s ^{−1}	slow/fast
Scan. accel.	0.4° s ⁻²	2° s ⁻²	short/long λ
Pointing knowledge	0.2"	1"	rms
M2 nutation	±2.5' @ 1 Hz		azimuth only
CCAT Feasibility/Concept Study	Review 17-18 January 2006	XXXX	

	Operations	Survival	remark
Wind	10	65	$m s^{-1}$
Temperature	-20 to +15	-30 to +25	°C
Rel. Humid.	0% – 95%		
Snow load		100	kg m ⁻²
Ice build up		25	mm
Precipitation		25	_ mm hr -1
Seismic		Zone 4	UBC
Daytime opera	tions		f no sun oi

CCAT Optical Design I	Darame	eters	
Design: Ritchey-Chrétien/Nas	smyth F	ocus	
Input Design Parameters	Symbol	Value	Units
Aperture Diameter Primary Focal Ratio System Focal Ratio	D f1/D f/#	25 0.6 f/8	[m]
Back Focal Distance Field of View Minimum Operating Wavelength	Β FOV λmin	11 20 200	[m] [arcmin] [μm]
CCAT Feasibility/Concept Study Review 17-18 January 2006			

	Ritchey-Chrétien Design	Para	meters		
		2 0/2 0/2		:	CCAT
	Design: Ritchey-Chrétien/Nas	smyth	Focus		
	Derived Design Parameters	Symbol		Units	
	M1 Diameter	D1	25	[m]	
	Eccentricity Vertex Radius of Curvature	ε1 R C1	1.000774 30.000	[m]	
	Focal Distance	f1	15.000	[m]	
	Edge Angle from Prime Focus	θ1	45.24	[deg]	
	M2 Diameter (with provisions for FOV)	D2	3.20	[m]	
	Eccentricity	82	1.169098		
	Vertex Radius of Curvature Edge Angle from Secondary Focus	R _{C2} θ2	3.922 3.58	[m] [dea]	
		02		[
CCA	AT Feasibility/Concept Study Review 17-18 January 2006		H		

CCAT Filed of View	Param	ieters	S S S S S S S S S S S S S S S S S S S
	Symbol	Value	Units
Specified Field of View Image Scale at Nasmyth Focus Optimum Radius of Curvature Size of 20 arcmin FOV Diffraction Spot-size at 200 µm	FOV IMS R _ø	20.0 1.031 1.938 1.164 1.920	[arcmin] [arcsec/mm] [m] [m] [mm]
Calculated Angular Aberrations	Symbol	Value	Units
Specified Field of View Angular Tangential Coma Angular Astigmatism Angular Distortion	FOV ATC AAS ADI	20.0 0.00 2.83 0.48	[arcmin] [arcmin] [arcmin] [arcmin]
CCAT Feasibility/Concept Study Review 17-18 January 2006			

	Wavelength Frequency:	: 200 [μm 1499 [GH	n] Iz]		CCAT
		Uniform Ilumination	Edge Tape -11 dB		
INT	HPFW Beam Width:	1.861	1.983	[arcsec]	
	Aperture Strehl:	100.00	100.00	[%]	
INF	Polarization Efficiency:	100.00	100.00	[%]	
E	Beam Efficiency:	76.21	85.97	[%]	
	Aperture Plane Efficiency:	98.73	87.58	[%]	
	Spillover Efficiency		88.37	[%]	
	Antenna Gain:		110.76	[dB]	
	Overall Antenna Efficiency:		77.40	[%]	
	Side Lobe Level (SLL):	-16.70	-22.27	[dB]	
(Cross-Polarization Level:	-326.30	-326.73	[dB]	

Wavelength Frequency	n: 200 [μm : 1499 [GH	n] Iz]		
	Uniform Illumination	Edge Tape -11 dB		
HPFW Beam Width:	1.892	2.008	[arcsec]	
Aperture Strehl:	96.75	98.39	[%]	
Polarization Efficiency:	99.99	99.99	[%]	
Beam Efficiency:	74.41	84.65	[%]	
Aperture Plane Efficiency:	95.59	85.41	[%]	
Spillover Efficiency		88.37	[%]	
Antenna Gain:		110.66	[dB]	
Overall Antenna Efficiency:		75.48	[%]	
Side Lobe Level (SLL):	-15.71	-20.89	[dB]	
Cross-Polarization Level:	-51.21	-52.63	[dB]	
A HAM AND	XXX			

M2 Positioning Requirements at 200 µm						
	Focus ∆z [µm]	De-center $ \Delta x^2 + \Delta y^2 ^{\frac{1}{2}}$ [μ m]	Tilt eqv ∆θ хØм₂ [µm]	Tilt ∆θ [arcsec]		
Image Quality: Strehl > 95%	< 80.0	< 380.0	<1,085.	< 70.0		
Pointing: ΔθΒΕΑΜ < HPBW /10		< 18.1	<u>< 16.0</u>	< 1.03		
CCAT Feasibility/Concept Study Review 17-18 January 2006			Øm z	2 = 3.20 [m] s= 1.20 [m]		

Best Fitted Ruze's Coeff	CCAT				
Ruze's Coefficient					
$-\left(\frac{4\pi \kappa_i \sigma_i}{\lambda}\right)^2$					
$\eta_{RUZE_i} = e \left(\begin{array}{c} c \\ c \end{array} \right)$	Symbol	Best Fitted Value			
Segment Piston Displacement	Кz	0.95424			
Segment Tilt/Tip (Equiv. Edge Displacement*)	Ktilt	0.49903			
Segment Radial Displacement	Кх	0.01543			
Segment Azimuth Displacement Segment Twist (Equiv, Edge Displacement*)	Ку	0.01468			
Cegment (Wist (Equiv. Edge Displacement)	KIWISI	0.00073			
$\epsilon_{rms} = \sqrt{(\kappa_z \sigma_z)^2 + (\kappa_{tilt} \sigma_{tilt})^2 + (\kappa_x \sigma_x)^2 + (\kappa_y \sigma_y)^2 + (\kappa_\omega \sigma_\omega)^2}$					
* Panel Base Size = 2.0 [m]					
CCAT Feasibility/Concept Study Review 17-18 January 2006					

Conclusions Cont...

- We have analyzed the segmentation effect of an active surface CCAT. The gaps between segments produce a series of grating lobes levels about –31 dB down, and are distributed with a six-fold symmetry in the far field pattern.
- We have calculated the effects, in terms of Strehl ratio, of random segment positioning errors of the active surface, including piston, tilt/tip, lateral displacement and twist segment errors.
- We have found a set of coefficients relating the standard deviation of a
 particular segment positioning error with its resultant structural rms surface
 error. We have concluded that the piston errors have the largest effect on
 the antenna performance, followed by tip/tilt errors being half as important.
- Although, segment piston, and tilt/tip errors are directly controllable by the active surface actuators, we found that un-controllable lateral segment displacements may be compensated by tip/tilt corrections.
- Segment twist errors are not controllable, neither can be compensated by a piston-tilt actuator system alone. Nevertheless, telescope performance is very insensitive to twist errors.
- We have calculated the effects of a uniform thermal expansion of the backstructure by a factor of 1.0005x. This produces a quadratic phase error distribution across of each of the segments, and a overall defocusing of the telescope. After refocusing the achievable Strehl ratio is better than 97%.

CCAT Feasibility/Concept Study Review 17-18 January 200

Estimate

- Site Access Road
- Mountain Facility: Cerro Chajnantor
 - Telescope Foundation
 - Telescope Base Enclosure and Control Facility (Excluding Dome)
 - Site Infrastructure and Improvements
- Support Facility, San Pedro de Atacama
 - Administration and Dormitory Facilities
 - Site Infrastructure and Improvements

M3 Engineering & Technology Corp. CCAT Feasibility/Concept Study Review 17-18 January 2006

Critical Risk Assessment

Mountain Facility Challenges:

- Lack of Oxygen:

 Use of Portable Oxygen Tanks and Masks.
 Difficult to Build within Typical Construction Tolerances Requiring Modifications or Rebuilding.
- Equipment Operation and Warranty:
- Typical Mechanical and Electrical Equipment is Rated for Sites Under 3000m
 - Built to Withstand Normal Environmental Conditions.
 - Equipment Performance Guarantee is Usually not Available for Equipment at 5500m Altitude or Higher.
 - Off the Shelf Equipment Needs to be Modified to Withstand the Severe Environmental Conditions and Require Additional Anchorage.
- All of these Factors have a Direct Impact and Risk on the Project's Schedule and Costs. Construction Delays, due to Weather, Labor Availability, etc. are Additional Costs to the Contractor and Owner Extending the Overall Construction Schedule, Possibly into the Next Construction Season.

M3 Engineering & Technology Corp. CCAT Feasibility/Concept Study Review 17-18 January 2006

Requirements for Subsystem	
	CCVI
CCAT Enclosure Requirements	
• Dome diameter: 50m	
Aperture diameter: 30m	
• Aperture zenith range: 0 – 75 degrees	
Azimuth rotation: unlimited	
Calotte rotation: 200 degrees	
Key environmental loads:	
Wind (survival): 65m/s	
 Snow Load: 100kg/m² 	
Ice Load: 25kg/m ²	
 Seismic: 0.4g ground acceleration 	
General: simplify on-site construction due to the extreme	
altitude	
 Trial assembly at the manufacturer's site 	
 Shipping via standard containers 	
 Construction procedures that minimize field labor 	
CCAT Feasibility/Concept Study Review 17-18 January 2006	

	Mass E	stimate
Component	Mass [Tons]	
Structural - Ribs	54	
Structural - Ties	101	
Structural - Azimuth Ring	21	
Structural - Interface Ring-Base	24	
Structural - Interface Ring-Cap	24	
Structural - Aperture Ring	12	
Structural - Shutter	50	
Structural - Cladding/Insulation	81	
lechanical – Azimuth	76	
lechanical - Interface	38	The training termination of the standard of the
lechanical - Shutter	15	
OTAL	496 tons	
ote: Gemini Dome: 36 Keck Dome: 36 r	6m Diameter 360 n Diameter 650 t	tons, Scaled to 52m=1100 tons

Scope of Design Task

 Design And Fabrication Of The Mount Structure

- Azimuth Rotating Structure (Alidade)
- Elevation Rotating Structure Except For The Primary Mirror And the Primary Mirror Support Truss
- Establishing Panel Layout
- Design Of Elevation And Azimuth Drives
- Design Of Control System For The Mount

Requirements	for Subsystem
 Alt-az mount Azimuth motion 	+ 270°
Elevation motion	>+10° to +90° (mechanical travel)
 Velocities and Accelerat Full Performance Scanning velocities 	0° To 60° Elevation Angle 0.2 deg/sec (slow); 1 deg/sec (fast)
Scanning accelerations Pointing accuracy Overall	2 arc-sec RMS
 Offset, 1 to 5 deg Offset, < 1 deg 	0.5 arc-sec, RMS 0.1 arc-sec, RMS
 Open loop behavior Nonguided image jitter 	<0.1 arc-sec
 Open loop drift Open loop drift goal	0.1 arc-sec in 1 min 0.1 arc-sec in 10 min
CCAT Feasibility/Concept Study Review 17-18 January 2006	

Key Design Issues

- The Close Spacing Of The Optics Poses Challenges For Designing Support Structure.
- The Dynamics Of Scanning At High Elevation Angles Controls Drive Design And Required Structural Stiffness.
- Installation At A Remote, High Altitude Site Requires The Work To Be Organized To Minimize Time At The Site.

Item	Requirement	Comment
Pointing Accuracy	2 Arcsec RMS	Values of 2-4 Arcsec Achievable
Offset Pointing 1º To 5º	< 0.5 Arcsec RMS	Reasonable Requireme for this Application
Tracking Dynamics	0.25 deg/sec 0.01 deg/sec ²	Achievable
Zenith Transit Outage	Nominal 8-10 minutes	Consistent With Tracking Dynamics
Nonguided Image Jitter	< 0.1 Arcsec	Consistent with Similar Designs. Wind Load Needs More Study
Open Loop Drift	0.1 Arcsec/Min	Realistic, SOAR meets this requirement

		Č
Item	Goal	Comment
Offset Pointing, <1º	< 0.1 Arcsec RMS	Difficult To Analyze And Meet
Open Loop Drift	0.1 Arcsec In 10 Min	Analysis Suggests This Is Difficult To Meet, Yet Our Experience with SOAR Indicates It May Be Possible

Control System and Dynamics

- Position Reporting Errors
 - Blind Pointing Errors Plus..
 - Errors Due To Dynamic Deflections
- Depends Upon As-Built Structure And Dynamic Requirements
- Some Example Values For Steady State Error Shown In The Table Below For Reference And Science Consideration
- Probable Structural Values In The 3-7 Hz Range

Acceleration =	1º/s ²	2º/s ²	3º/s ²
Structural Resonance	Stea	ady State Error, Arc	Seconds
2 Hz	23	46	69
3 Hz	10	20	31
4 Hz	6	12	17
7 Hz	2	4	6
10 Hz	0.9	1.8	2.8
CCAT Feasibility/Concept Study Review 1	7-18 January 2006	XXXX	

Telescope	Panel Shape	Material	Fabrication	Mounting	Figure (RMS µm)	C
Caltech Submm Obs	Hexagonal	Aluminum	Machined as Parent	Active, Open Loop. Kinematic	~15	
H. Hertz Telescope	Radial	CFRP/Al Sandwich	Replication & Bonding	Passive & Overconstrained	~15	
ALMA/APEX- (VRSI)	Radial	Aluminum	Machined as Panels	Passive & Overconstrained	~20	
ALMA Alcatel/EIE	Radial	Electro- Ni/AL Sand.	Replication & Bonding	Passive & Overconstrained	~20	
Keck Telescopes	Hexagonal	Zerodur	Stressed Lap & Ion	Active, Closed, Kinematic	~0.03	
Hobby Ebberly	Hexagonal	Zerodur	Planetary & Ion Figuring	Active, Closed, Kinematic	~0.045	
SALT	Hexagonal	Sittal (Fused Oz)	Planetary &	Active, Closed, Kinematic	~0.045	

We Have Assumed that CCAT Must be Segmented...okay?

CCAT Feasibility/Concept Study Review 17-18 January 2006

Panel Shape

Hexagonal Segments

- Less Deflection for Kinematic 3 Point Mounting
- Only 6 Identical of Each Type: (~35 Different Types)
- Don't Regularly Tile Surface of Revolution
- Don't Form Smooth Inner/Outer Edges (Wasted Area)

Radial Segments

- Not a Favorable Shape for 3 Point Support
- Only 6-7 Different Types of Panels
- Identical Perimeter Shapes for Each Type
- Full Area of Panels Useable to Inner/Outer Edges

Conclusion: If Radial Panels Would Exhibit Acceptable Deformation on 3 Point Mounts Then Better In Other Regards

CCAT Feasibility/Concept Study Review 17-18 January 2006

Top-Down	error bu	ıdget	CT.
1/2 Wavefront Error Budget			
	ALMA RFP	CCAT	
Panels	[microns]	[microns]	
Total Panel (RSS)	11.8	5.0	
Backing Structure			
Total Backing Structure	7.5	4.0	
Panel Mounting			
Total Panel Mounting (RSS)	5.4	4.0	Total Active Surface Control
Secondary Mirror			
Total Secondary Mirror (RSS)	8.4	3.5	
Total Tertiary Mirror (RSS)	0.0	3.5	
Total Measurement and Setting (RSS)	10.0	4.0	Astro. WFE & Holography
Other Errors not Included Above	2.0	1.5	
TOTAL (RSS)	20.0	10.0	
CCAT Easeikilitu/Concert Study Paview 17.19 January 2000			

Panel errors	
• Loads	
◆ Thermal: △T CTE	
• Uniform: D ²	
 Iateral RMS: h 	
 axial through segment: D²/h 	
Radiative	
 Air and insulation 	
• Gravity: ρ t D ⁴ / Y h ²	
• Wind: $v^2 D^4 / Y h^2$	
Other errors	
◆ Fabrication: D ²	
♦ Aging: D ²	
 Comparable to other detailed designs 	

	Error budget input parameters	5
	Panel design	- XAY
	• dimensions: d, t, h, f	CCAT
	• Materials	
	Fabrication errors for 1 m dia panel, typical value 1 micron	
	Panel thermal environment	
	Change in average temperature	
	• RMS air temperature over 1 m, $d^{1/2}$	
	Dome temperature	
	Insulation thickness	
	• Thermal emissivity	
	Cold sky coverage	
	Boundary layer thickness	
	Sensor configuration	
	Number of distance measuring devices and noise	
	Sensor noise	
	Number of panels (from panel dia)	
	(Panel errors feed into sensor errors)	
	Misc. error sources	
	Panel location	
	• Wind	
	Surface measurement man resolution	
	Vibration	
cc	AT Feasibility/Concept Study Review 17-18 January 2006	

Typical thermal environment parameters

NV
CCAT

average segment temperature [K]	273
temp. difference BUS to dome air [K]	5
foam thickness [m]	0.05
foam surface emissivity	1.00
effective air boundary thickness back [m]	0.05
thermal emissivity of back of segment	0.07
thermal emissivity of front of segment	0.07
effective air boundary thickness front [m]	0.05
fraction of cold sky seen by segments	0.50

egments	CFRP-AI-CFRP	Ni-Al-Ni	borosilicate	Aluminum
ize diagonal [m]	2 07	1 82	1 30	1 07
umber of segments	147	102	370	542
real density [km/m^2]	8.94	18 45	8 41	13 10
rrors [microns]	0.01	10.10	0.11	10.10
ravity	0.93	0.95	0.63	0.60
vind	0.16	0.32	0.48	0.29
nermal cupping	0.03	2.87	3.39	0.64
ateral Trms	1.68	1.39	0.11	0.63
nanufacturing errors	4.26	3.29	1.69	4.61
ging	0.53	0.33	0.00	0.58
et segment error	4.71	4.70	3.87	4.78
primary figure maintence				
umber of distance measurements	6	36	58	36
istance measuring error	1.00	1.00	1.00	1.00
urface error from edge sensors	10.32	3.80	4.89	4.46
urface error from angle sensors	3.48	10.46	14.91	6.78
et surface maintenance error	3.45	3.71	4.75	3.86
otal primary 1/2WFE	5.84	5.99	6.13	6.14
ther non-primary surface 1/2WFE				
rimary support	4.91	4.72	4.50	4.46
econdary	3.49	3.49	3.49	3.49
ertiary	3.49	3.49	3.49	3.49
vavefront measurement	4.18	4.19	4.22	4.26
otal other contrib. 1/2WFE	8.12	8.0	7.90	7.90
otal talasaana 1/2W/EE	10.00	10.00	10.00	10.00

Feasible pointing error budget

	ALAM RFP	template	CCAT
	day	night	
	[arcsec]	[arcsec]	[arcsec]
wind, steady component	0.20	0.45	0.04
wind, gusty component	0.10	0.10	0.02
structure temperature gradients	0.35	0.00	0.05
ambient temperature changes	0.20	0.00	0.05
inertial forces	0.15	0.15	0.10
encoder errors	0.20	0.20	0.10
servo error	0.10	0.10	0.10
bearing errors	0.20	0.20	0.05
other errors	0.19	0.19	0.05
Total RSS error	0.60	0.60	0.20

Risk assessment Large panels are the highest risk 	
Scaling processes to larger sizes	CCAT
Achieving manufacturing tolerance	
Thermal environment	
Cost	
Mitigation/Alternatives	
Early prototype and full scale test production run	
Smaller panels on CFRP sub-frames	
 Active surface maintenance is a moderate risk 	
More complex than previous systems	
Components must be much cheaper than previous systems	
Mitigation/Alternatives	
Accurate detailed simulation of the full system	
Prototype large part of the system	
 Add more distance measuring devices 	
 Pointing accuracy is a moderate risk 	
Well beyond current performance for radio telescopes	
Drive servo system is larger and more precise than existing systems	
 New sources of small pointing errors will be exposed 	
Mitigation/Alternatives	
 Optical offset guiding when possible 	
 Fast tip-tilt corrector 	
 Direct drive servo system 	
CCAT Feasibility/Concept Study Review 17-18 January 2006	

CCAT 1/2 WEE from paral	meterized	model with	raits	
twice the panel manufacturing	ng error			
segments	CFRP-AI-CFRP	Ni-Al-Ni	borosilicate	Aluminum
size, diagonal [m]	0.67	0.67	0.67	0.67
number of segments	1406	1406	1406	1406
areal density [km/m ²]	2.89	6.78	4.31	8.13
errors [microns]				
manufacturing errors	0.89	0.89	0.89	1.78
net segment error	0.95	1.05	1.80	1.86
sub-frames				
dia [m]	2.00	2.00	2.00	2.00
number of sub-frames	156	156	156	156
number of segments per sub-frames	9	9	9	9
areal density	16.20	16.20	16.20	16.20
errors [microns]				
gravity, including segment wt.	1.14	1.37	1.22	1.45
wind	0.09	0.37	0.37	0.37
Temp. change	0.00	0.00	0.00	0.00
thermal cupping	0.11	0.11	0.11	0.11
lateral Trms	0.01	0.01	0.01	0.01
adjuster temp & gravity	0.18	0.18	0.18	0.18
segment setting errors	1.20	1.20	1.20	1.20
aging	0.40	0.40	0.40	0.40
net subframe error	1.72	1.91	1.81	1.97
primary figure maintence				
number of distance measurements	6	6	6	6
het surface maintenance error	3.26	3.46	3.63	3.46
total primary 1/2WFE	3.80	4.09	4.44	4.39
total other contrib. 1/2WFE	8.08	8.08	8.08	8.08
	0.02	0.05	0.22	0.20

- Example 1: SMT panels 1.55m on side & 6 μm rms.
- Example 2: Current CMA development of rigid 1.4m optical mirrors.
- Approach is of acceptable risk. Similar products have been field tested. Manufacturing technology is successful & cost effective.
- Challenge for CMA concept design is *Value Engineering*. Our design process aims to
 - maximize performance
 - reduce cost
 - reduce overall weight

XIIII	6 ring trapezoidal	7 ring trapezoidal	Hexagonal
Number of panels	162	228	210
Areal density	9.8 Kg/m ²	8.3 Kg/m ²	7.0 Kg/m ²
Total reflector mass	4740 Kg	4010 Kg	3390 Kg
Shape & aspect ratio	Worse	Acceptable	Good
Attachments *	Unnatural match to 3-point mount	Unnatural match to 3-point mo <u>unt</u>	Natural match to 3-point mount
Performance	Acceptable	Better	Better
Cost	Baseline + 20%	Baseline cost	Baseline – 10%

Composite Mirror Applications	anel Error Budget or all panels, worse case)	CCAT
	general panel	sub-aperture use
Item	rms (micron)	rms (micron)
Mold	1	0.05
Replication	1.5 (TDC)	0.10
Gravitational	2	n/a
Wind (5 m/s)		n/a
Absolute T change	1	n/a
T gradient	0.5	0.2
Aging	0.5	0.3
Total (RSS)	3.1	0.38
CCAT current spec:	5	
CCAT Feasibility/Concept Study Review 1	7-18 January 2006	

CCAT FEASIBILITY/COTICEPT Stray Review 17-18 January 2006

System Design: Option 1

- · Shearing interferometer: focal plane sensing with single pixel detector
- Proven at CSO:
 - 9 µm accuracy
 - 15×15 and 21×21 maps made
 - few hour measurement timescale achieved
- Can be improved significantly in terms of efficiency
- Point-by-point approach will always introduce systematic errors

System Design: Option 2

- Focal-plane Point Diffraction Interferometer
- · Spreads out the energy of the reference beam
- · Makes use of array detectors to instantaneously sense full focal plane field
- Lower instantaneous SNR per point
- · Gains in the areas of stability and systematics

System Design: Option 3

- Pupil-plane Point Diffraction Interferometer
- Switch to pupil-plane sensing in this approach, as in the optical Only need to scan one mirror by $1\text{-}\lambda$

System Design: Hybrid Option

Hybrid Interferometer: focal-plane and/or pupil-plane sensing

Supporting Analysis II
Ultimate sensitivity of submm wavefront sensors depends on:
Phase measurement accuracy in the presence of long-
λ background noise
 Start with pupil plane measurement case:
• Phase accuracy: $\phi = 1/SNR = sqrt(N_{background})/N_{signal}$
• Signal:
 Source flux per subaperture
 (only Mars, Uranus, Neptune are small and bright enough)
 Atmospheric and instrumental transmission (T)
• Noise:
Number of background modes transmitted by cold stop
• Bose-Einstein statistics: $\Delta n = sqrt(n(n+1))$

Suppor	rting Analysi	is III 🔬	>
End with:		CCAI	
• $\Delta \mathbf{x} \approx \lambda / (100 \mathrm{Tyt})$			
Approximately prop	ortional to λ		
 (Both signal and nois) 	se vary with λ di	ifferently)	
 Short wavelengths have 	ave higher accur	racy	
(assuming reasonabl	le atmospheric t	ransmission)	
Calculate time to rea	ach 3- σ sensit	ivity of 3 μm (in a sq.	
m).			
• Assume $T_{inst} \approx 0.1$ (la	argely the pinhol	le)	
♦ Assume T _{atm} (350) –	0.7; T _{atm} (1300) -	- 0.97	
λ (μm)	Time (sec)		
350	25		
1300	240		
CCAT Feasibility/Concept Study Review 17-18 January 200	6		

Hartmann Type Segment Position Sensing

Concept Provided by Alan Wirth Adaptive Optics Associates Cambridge, MA

Requirements

- Guidestars within field of view
- Sensitivity to guide at 0.1-20 Hz
- Goal to guide in common mode with science starlight, avoiding additional non-common path concerns of a sidemounted guide telescope

System Design

- For subapertures small enough for a good PSF and large enough to avoid excessive diffraction, guiding signal (global tilt) is recovered without significant SNR penalty by averaging
- Can be considered as a parallel set of small guide telescopes, each using only a small piece of the optics
- Additional benefit is wavefront sensing
- Coarse alignment will require additional modes (e.g. Curvature/Phase Diversity) to sense segment edge discontinuities, as used for Keck mirror alignment, which can be implemented in same guider

Conclusion

- Wavefront sensing/guiding can be implemented at $\lambda \sim 2 \ \mu m$
- There is a very large advantage in SNR available from astronomical objects by going to these wavelengths
- If the choice of panel technology supports these wavelengths, then an IR wavefront sensor can be a solution to initial calibration and maintenance of segment and telescope alignment

Axes – Resolution Spec μm / μrad	Average Resolution μm / μrad	Standard Deviation µm / µrad	Maximum Step μm / μrad
X - 65.0	65.0	0.86	66.7
Y - 65.0	65.0	1.25	66.6
Z - 18.0	18.0	0.90	19.3
Ox - 4.85	4.84	0.95	6.71
Oy - 4.85	4.84	1.86	8.67
Oz - N/A	4.86	0.53	5.32

Baseline vs. Integrated M2 Positioner				
	Baseline	Integrated	CCAT	
Actuator Count	8-10 Active, 24 Passive	24 Active		
Actuator Mass	300 kg	60 kg	1	
Kinematic Joints	60	48	1	
Axes of Nutation	1, or 2 with add'l gimbal ring	2, relatively simple		
Hex Actuator Resolution	3 micrometer	1 micrometer		
Hex Actuator Force	1230 N	120 N		
Hex Actuator Stroke	79 mm	70 mm		
Hex Actuator Speed	~0.5 mm/s	75 mm/s		
Support to Vertex Length	1.39 m	0.85 m		
Alignment	6 manual mechanisms/panel	6 active actuators per panel		
Risks	Accessibility, number of actuators & joints	Localized Actuator Wear, Coordinated Control of Segments		

CCAT First Light Instruments

Short wavelength camera

- 200 μm, 350 μm, 450 μm, 620 μm windows
- Bands selected by a milli-Kelvin filter wheel
- 32,000 pixel TES silicon bolometers
- 5' × 5' FoV

Long wavelength camera

- $740~\mu m,\, 870~\mu m,\, 1.1~mm,\, 1.4mm,\, and\, 2.0~mm$ windows
- Slot dipole antennae coupled bolometers bands separated by microstrip bandpass filters
- 1024 to 16,384 pixels depending on wavelength
- 10' × 10', and 20' × 20' FoV
- These two instruments will occupy the two Nasmyth foci so that all continuum science goals can met without instrument changes

Instrument Transfers to CCAT

- The primary science is enhanced through additional
 instrumentation
 - Spectroscopy of nearby and distant galaxies
 Direct detection spectrometers
 - Spectroscopy of Galactic star formation regions and protostars
 - Heterodyne spectrometers
 - Studies of magnetic fields Galactic star formation regions and protostars
 - Polarimetry through rapid polarization modulation
 - High resolution far-IR imaging of AGN, starformation regions and debris disks
 - Sparse aperture imaging with a 40 μm camera

We are base-lining closed cycle refrigerators for all CCAT instrumentation

- Pulse tube coolers cool down instrument to 4.2 K
- Closed cycle ⁴He system cools detector package to 2 K
- Closed cycle ³He system cools detector package to 250 to 300m K

Cryo-coolers

- For the baseline cameras, requisite NEPs are achievable with a head temperature of 225 mK
- We get NEPs ~ 10^{-16} W/Hz with Zeus at 250 mK
- If necessary, ADR can cool system further (60 mK)
- The end stage coolers are closed cycle ³He systems or ADRs that are temperature stabile, and vibration free

Low T F	lead
"He-7" system (e.g. VeriCold):	
 Based on 4K pulse tube cooler (e.g.Cryomech) 	
Cooling power of 40 W at 45 K	411
• 1 W at 4.2 K	
Power consumption ~ 7 KW	
 Two stage ⁴He and ³He sorption coolers (e.g Chase Research) 100 uW cooling @ 300 mK 	
• Can go to 225 mK with "He-10" system:	
Dual stage ³ He sorption cooler	
 50 uW cooling @ 250 mK as in our ZEUS spectrometer 	
♦ Can go to 60 mK with an ADR	
• Typically has ³ He thermal shield	Dual stage ³ He cooler
Provides ~ few uW cooling @ 60 mK CCAT Feasibility/Concept Study Review 17-18 January 2006	used in ZEUS/SPIFI

Array

- Baseline is extension of SCUBA-2 array from NIST
- 4 × (32 × 40) pixel subarrays to make 5120 pixels – extend to 32,000 by using 25 edge-butted arrays
- Heritage with similar technologies
 - JPL/Caltech group manufactures sensitive "spider-web" arrays
 - CCAT members also have great experience with arrays from GSFC (e.g. SHARC-2)
- These arrays easily deliver the requisite sensitivities (< 10⁻¹⁶ W/Hz^{-1/2}) for SWCam with milli-Kelvin cold heads

Long-Wavelength Camera

- $\bullet~$ The long-wavelength camera (LWCam) covers 5 bands from 740 μm to 2 mm
- Fore-optics will be mirror system, since for longer λ 's:
 - The background is much lower so that even the small emissivity of Germanium lenses is not sufficient
 - The beam is much larger, so the relatively poor PSF delivered by the off-axis mirror design is sufficient
 - A larger FoV is populated with the same number of pixels. Lenses that would be required to image a 20' FoV become unaffordably large.
- Antenna-coupled bolometer arrays are feasible
 - Enable multifrequency coverage using a single focal plane array
 - Phased array antennae provide accurate beam definition especially important with lower sky emissivity at these wavelengths

LWCam Optical Design

- Practical concerns lead to a final f-ratio of f/2:
 - **Pixel Size**: At 2 mm we wish to use $2f \lambda = 8$ mm pixels for good beam definition this is a very reasonable size (single pixels exist) for antenna coupled pixels at 2 mm.
 - Focal plane size: f/2 yields a plate scale of 4"/mm so that the 20' FoV corresponds to a 30 cm diameter focal plane – 16 tiles produced on 4" silicon wafers can fill this focal plane
- All reflective optics reduce f/8 from telescope to f/2 for the array
 - Preliminary design is twin conjugate ellipsoidal mirrors
 - Image of primary just inside dewar window to provide a cold stop to terminate the sidelobes of the beam from the phased-antenna array
- Since the re-imaging optics are warm, they may be large
 - Large mirrors less of a concern at longer wavelengths
- $\diamond~$ All transmissive optical elements need to be AR coated so as to be reasonably efficient over the 740 μm to 2 mm band...

Antenna coupled Arrays – 3

(1400)

(1100)

350

(870)

405

(740)

Total

- Filling the entire 20' FoV with multi-scale pixels requires about 140,000 pixels which is quite a challenge at present
- However, the pixel count is reduced by including high frequency pixels only in the central parts of the array:
 - 16 tiles cover entire FoV
 - Central 4 (10' \times 10' FoV) have multi-scale pixels operating at 740 and 865 μm with 16,384 pixels
 - The remaining 12 tiles can form large pixels at the shorter wavelengths

J Ar	-0.4 -0.6 -0.6 Talys		
	LWC	am Par	ameters
Band GHz μm)	Δν (GHz)	Pixel Size f·λ	Number of Spatial Pixels
150 2000)	30	2.3	16 tiles \times 64 = 1024
220	40	3.2	$16 \text{ tiles} \times 64 = 1024$

2.1

2.8

0.8

3.2

 $16 \text{ tiles} \times 256 = 4096$

 $4 \text{ tiles} \times 4096 = 16384$

 $12 \text{ tiles} \times 256 = 3072$

 $4 \text{ tiles} \times 4096 = 16384$

 $12 \text{ tiles} \times 256 = 3072$

Existing Instruments for CCAT

 Budget and schedule limit us to SWCam and LWCam at first light

These cameras deliver most of the fundamental goals of the project

- The addition of spectroscopic capabilities, however, clearly enhances the science return
- At modest R, suitable for extragalactic work, direct detection spectrometers are the instruments of choice
 - Large instantaneous bandwidths
 - Operate near photon limit
- At high R, such as that required for protostars (R > 10⁵) heterodyne spectrometers are the natural choice
- Consortium members have constructed a wide variety of direct and heterodyne spectrometers transferable to CCAT
- These instruments continue to "evolve" and be replaced by better instruments as technology improves

ZEUS – 1			
Redshift (z) and Early Universe	ZEUS Propertiescar		
 Spectrometer (ZEUS) Long slit echelle grating spectrometer Designed for use in the 350, 450, 610 µm talluric windows in 5th/4th and 3rd order of 	Echelle Order	Spectral Range (µm)	Resolving Power R
• Employs a 1×32 pixel thermister sensed		185 to 211	1280 to 2700
bolometer array yielding 3.2 % BW at R = 1000	8	208 to 237	1140 to 2400
 Upgradeable to 12 × 64 pixel TES array to extend coverage to 6.4%, and 12 beams on the sky – well configured for resolved 	6	278 to 316	850 to 1800
 hearby galaxies Low cost future improvements 	5	333 to 379	710 to 1500
• Cover more windows: Open up 8 orders of the echelle with a filter wheel	4	416 to 474	570 to 1200
 Convert to a multi-object spectrometer: Can implement "fiber optics" system feeding multiple point sources to the long 	3	555 to 632	430 to 900
Slit CCAT Feasibility/Concept Study Review 17-18 January 2006	2	832 to 948	285 to 600

Future Instruments for CCAT

- High priority is the implementation of multiobject spectrometers
- \diamond We also are investigating a 40 μm diffraction limited imaging

Control System Design Approach

- Hire experienced software engineer
- Define use cases and requirements
- Detailed functional specifications
- Interface identification and spec.
- Choose development tools and stds
- Identify hardware capacities

Electronics Scope

- Power Sources, Distribution and Protection Strategy
- Lighting and Emergency Lights
- Safety and Security Equipment
- Communications Network
- Control System Implementation
- System Specific Equipment
- Computer System Approach
- Dome and Shutter Controls
- ♦ Optical Systems Electronics
- Instrument Interface Electronics
- Coating Plant Controls

Electronics for Major Subsystems Included in Contractor's Scope of Work

<section-header><section-header><list-item><list-item><list-item><list-item>

Operating Modes of Foreign Observatories in Chile

•Establishment of foreign observatories in Chile takes place under guidelines contemplated in the "Astronomy Law", nr 15172.

• A foreign, non-profit organization (such as AURA, AUI or Carnegie) establishes legal presence in Chile and enters a cooperative agreement with a Chilean academic institution (such as Universidad de Chile or P. Universidad Catolica).

• That partnership requests recognition as recipient of the privileges described in the Astronomy Law and operation of the observatory takes place under that legal umbrella.

• The Chilean partner administers the 10% of the telescope time allocated, by law, to scientists at Chilean institutions.

Site Issues and New Political Paradigms

In the last year, the bureaucratic path to obtaining permits for astronomical site activities has become much more complex and slower.

This reflects a political shift towards increased recognition of the rights of indigenous populations, higher sensitivities towards the value of the historical record found in the field and increased protection of the physical and biological environment.

Requests that until recently were processed by CONICYT (National Committee for Science and Technology) within a matter of days now require clearance by CONADI (National Committee for indigenous affairs) and by local committees. While these new practices enhance the protection of the environment, preserve the historical record and protect local rights, they also increase the scheduling burden for initiatives that require agile implementation, such as site surveying.

CCAT Feasibility/Concept Study Review 17-18 January 2006

Practicalities and CCAT Operation Modes - 2

• The baseline paradigm for the CCAT operation contemplates independent facilities, staff and services.

• This does not reflect any final decision on the observatory operational mode, but rather the easiest way to estimate a costing profile.

• Operation of an independent support facility at the lower altitude near San Pedro is part of the baseline operations paradigm. It may also be the most likely to be reconsidered. The most important reason is that it will be difficult to maintain good quality of services: a 20 person operation may not have critical mass to achieve that goal (power, water, gasoline, food, contracting with remote providers of services and manpower).

- Possible alternatives:
 - join forces with another operation of comparable size (e.g. APEX)
 - contract space and services with ALMA
 - rent space at a local hotel (e.g. CBI mode)

- Engineering 1st Light Activities
- Instrument Installation
- ♦ First Light
- Commissioning

Preparation for Integration (cont.)

Facility Inventory

- Inventory Identified via Survey of Existing Telescopes
- Full Equipment/Materials Lists Prepared
- Procurement in US, Shipped in One Container
- Enables Full Population of Facilities When Completed

Supplementary Tools for Integration

- Contractors Supply Many of Their Own Tools
- Rental or Purchase of Others Required as Appropriate
- Special Tools Either Project Purchase or as Part of Contracts for Major Subsystems

Summary

- Integration Plan is Based on Previously Successful Approaches
- Unique Challenges for CCAT
 - Altitude & Remote Location
 - Extremely Large Telescope for Required Precision
 - Logistics of Personnel Relocation and Turno
 - Logistics for Contract Labor Force
 - Logistics for Health and Safety Services
- Integration Plan will be Further Developed During Engineering Concept Design Phase

Operations in Chile

- Similar to CBI, APEX, and other observatories
- Support facility near San Pedro de Atacama
- *Turno* work shifts with weekly commute
 - San Pedro is a *very* small town; 8 d x 10 h on, 6 d off
- \approx 20 local staff, mostly Chilean recruits
- Installation & commissioning help from partners
- No (large) facilities in Santiago
- Contract services when possible
 - Administration (HR, purchasing, accounting, import/export)
 - Housekeeping, catering, etc.
 - Vehicle and equipment (e. g., generator) maintenance

Personnel

- Predominantly Chilean staff
 - Engineers and technicians available
 - On-job training necessary for specialties
 - Scientists, senior managers may be US expats
 - CCAT will compete with mines, other obs.

♦ Turno system

- San Pedro *very* small
- Weekly commute from residences
- System common at mines, other observatories

Position	Number	On [d] Off	
Site Manager	1	8	6
Administrator		8	6
Astronomer, telescope	2	8	6
Astronomer, survey	2	8	6
Engineer, instrument	2	8	6
Engineer, telescope	2	8	6
Engineer, software	2	8	6
Operator	6	8	6
Technician	2	5	2
Total	20		

Operations Budget	
Category	(millions)
Telescope Operations	\$ 3.83
US Support	\$ 0.62
Instrument Upgrade	\$ 0.80
Total	\$ 5.25
CCAT Feasibility/Concept Study Review 17-18 January 2006	

Telescope Operations				
Category	(thousands)			
Staff	\$ 1608			
Transportation	\$ 519			
Housekeeping	\$ 100			
Utilities	\$ 250			
Services	\$ 35			
Materials	\$ 100			
Land use	\$ 125			
Subtotal	\$ 2738			
Contingency (40	%) \$ 1095			
Total	\$ 3833			
CCAT Feasibility/Concept Study Review 17-18 January 2006	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			

US Support			Part of the second seco
Staff		\$ 315	
Observatory Director	0.25		
Telescope Scientist	0.25		
Telescope Engineer	0.25		
Survey Astronomer	2		
Assistant	1		
Travel		\$ 200	
Matls. & Services		\$ 100	
Total (thousands)		\$ 615	
CCAT Feasibility/Concept Study Review 17-18 January 2006			

Project Starring					1 1 1 1 1	
Skill	Number	US Office	e Chile		, c	
Project Manager		*	>	•	Initial Definition	
Deputy Project Manager	1	*	>		"> " Moone Moves to	
Administrative Assistant		$\langle \cdot \rangle $		•	> Means Moves to	
Project Engineer			>_		Chile	
Site Manager					Effort Mode to Uire	
Administrative Manager		XXX		· •	Enort Made to File	
Optical/RF Engineer		$\sim \times /$			Chileans Who Can	
Electrical Engineer		\land			Return and Stav	
Mechanical Engineer	<u> </u>					
Control Engineer			>	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	Desirable to Hire	
Software Engineer					Some Who Will	
Mechanical Technician	2	XII				
Electronic Technician	2	444	*		Transition to Ops	
Software Technician	1		<u> </u>		Lean/Mean Team	
Scheduler/Planner	1	*		H		
Administrative Specialist					Contracts for Other	
	19	<u> </u>	13		Labor	

Business Model Partners Form Not-For-Profit Corporation • Legal Operating Entity in Chile • Insulates Partners from Liability • Operate Project from Within a Partner Organization • Project is Too Small to Provide All Services • Legal, Personnel, Purchasing, Payroll, etc. Provides Infrastructure Necessary During Initial Development (Offices, Meeting Rooms, etc.) Graduate to More Self Sufficient Stage During **Operations**

Contracting

- Approach
 - Firm Fixed Price Contracts
 - Competitive Procurements When Possible and Practical
 - Adherence to Federal Acquisition Regulations
 Not Required if No Federal Funding
 - A Good Process for a Level Playing Field
 - Sole Source Justifications Developed for Non-Competitive Awards
- Contract Statements of Work
 - Include Stages at Which Formal Approval by Project is Required
 - Define Process by Which Work Will be Done

