

CCAT First Light Instruments

Short wavelength camera

- 200 μm, 350 μm, 450 μm, 620 μm windows
- Bands selected by a milli-Kelvin filter wheel
- 32,000 pixel TES silicon bolometers
- 5' × 5' FoV

Long wavelength camera

- $740~\mu m,\, 870~\mu m,\, 1.1~mm,\, 1.4mm,\, and\, 2.0~mm$ windows
- Slot dipole antennae coupled bolometers bands separated by microstrip bandpass filters
- 1024 to 16,384 pixels depending on wavelength
- 10' × 10', and 20' × 20' FoV
- These two instruments will occupy the two Nasmyth foci so that all continuum science goals can met without instrument changes

Instrument Transfers to CCAT

- The primary science is enhanced through additional
 instrumentation
 - Spectroscopy of nearby and distant galaxies
 Direct detection spectrometers
 - Spectroscopy of Galactic star formation regions and protostars
 - Heterodyne spectrometers
 - Studies of magnetic fields Galactic star formation regions and protostars
 - Polarimetry through rapid polarization modulation
 - High resolution far-IR imaging of AGN, starformation regions and debris disks
 - Sparse aperture imaging with a 40 μm camera

We are base-lining closed cycle refrigerators for all CCAT instrumentation

- Pulse tube coolers cool down instrument to 4.2 K
- Closed cycle ⁴He system cools detector package to 2 K
- Closed cycle ³He system cools detector package to 250 to 300m K

Cryo-coolers

- For the baseline cameras, requisite NEPs are achievable with a head temperature of 225 mK
- We get NEPs ~ 10^{-16} W/Hz with Zeus at 250 mK
- If necessary, ADR can cool system further (60 mK)
- The end stage coolers are closed cycle ³He systems or ADRs that are temperature stabile, and vibration free

Low T F	lead
"He-7" system (e.g. VeriCold):	line in the second s
 Based on 4K pulse tube cooler (e.g.Cryomech) 	
Cooling power of 40 W at 45 K	411
• 1 W at 4.2 K	
Power consumption ~ 7 KW	
 Two stage ⁴He and ³He sorption coolers (e.g Chase Research) 100 uW cooling @ 300 mK 	
◆ Can go to 225 mK with "He-10" system:	
Dual stage ³ He sorption cooler	
 50 uW cooling @ 250 mK as in our ZEUS spectrometer 	
♦ Can go to 60 mK with an ADR	
• Typically has ³ He thermal shield	Dual stage ³ He cooler
Provides ~ few uW cooling @ 60 mK CCAT Feasibility/Concept Study Review 17-18 January 2006	used in ZEUS/SPIFI

Array

- Baseline is extension of SCUBA-2 array from NIST
- 4 × (32 × 40) pixel subarrays to make 5120 pixels – extend to 32,000 by using 25 edge-butted arrays
- Heritage with similar technologies
 - JPL/Caltech group manufactures sensitive "spider-web" arrays
 - CCAT members also have great experience with arrays from GSFC (e.g. SHARC-2)
- These arrays easily deliver the requisite sensitivities (< 10⁻¹⁶ W/Hz^{-1/2}) for SWCam with milli-Kelvin cold heads

Long-Wavelength Camera

- $\bullet~$ The long-wavelength camera (LWCam) covers 5 bands from 740 μm to 2 mm
- Fore-optics will be mirror system, since for longer λ 's:
 - The background is much lower so that even the small emissivity of Germanium lenses is not sufficient
 - The beam is much larger, so the relatively poor PSF delivered by the off-axis mirror design is sufficient
 - A larger FoV is populated with the same number of pixels. Lenses that would be required to image a 20' FoV become unaffordably large.
- Antenna-coupled bolometer arrays are feasible
 - Enable multifrequency coverage using a single focal plane array
 - Phased array antennae provide accurate beam definition especially important with lower sky emissivity at these wavelengths

LWCam Optical Design

- Practical concerns lead to a final f-ratio of f/2:
 - **Pixel Size**: At 2 mm we wish to use $2f \lambda = 8$ mm pixels for good beam definition this is a very reasonable size (single pixels exist) for antenna coupled pixels at 2 mm.
 - Focal plane size: f/2 yields a plate scale of 4"/mm so that the 20' FoV corresponds to a 30 cm diameter focal plane – 16 tiles produced on 4" silicon wafers can fill this focal plane
- All reflective optics reduce f/8 from telescope to f/2 for the array
 - Preliminary design is twin conjugate ellipsoidal mirrors
 - Image of primary just inside dewar window to provide a cold stop to terminate the sidelobes of the beam from the phased-antenna array
- Since the re-imaging optics are warm, they may be large
 - Large mirrors less of a concern at longer wavelengths
- $\diamond~$ All transmissive optical elements need to be AR coated so as to be reasonably efficient over the 740 μm to 2 mm band...

CCAT Feasibility/Concept Study Review 17-18 January 2006

Antenna	coupl	ed A	rravs	-3

- Filling the entire 20' FoV with multi-scale pixels requires about 140,000 pixels which is quite a challenge at present
- However, the pixel count is reduced by including high frequency pixels only in the central parts of the array:
 - 16 tiles cover entire FoV
 - Central 4 (10' \times 10' FoV) have multi-scale pixels operating at 740 and 865 μm with 16,384 pixels
 - The remaining 12 tiles can form large pixels at the shorter wavelengths

	3 0.0 -0.4 -0.6 -0.6		
l Ar	rays	5 — 3	
	LWC	am Par	ameters
Band GHz μm)	Δv (GHz)	Pixel Size f·λ	Number of Spatial Pixels
150	30	2.3	16 tiles \times 64 = 1024

' FoV	LWCam Parameters			
els DOO e a	Band GHz (µm)	Δν (GHz)	Pixel Size f·λ	Number of Spatial Pixels
count is	150 (2000)	30	2.3	$16 \text{ tiles} \times 64 = 1024$
g high y in the	220 (1400)	40	3.2	$16 \text{ tiles} \times 64 = 1024$
array: e FoV	275 (1100)	50	2.1	$16 \text{ tiles} \times 256 = 4096$
' FoV) ixels	.350 (870)	40	0.7 2.8	4 tiles×4096 = 16384 12 tiles × 256 = 3072
nd 865 xels	405 (740)	30	0.8 3.2	4 tiles×4096 = 16384 12 tiles × 256 = 3072
tiles can t the ns	Total		H	45,056 detectors

Existing Instruments for CCAT

 Budget and schedule limit us to SWCam and LWCam at first light

These cameras deliver most of the fundamental goals of the project

- The addition of spectroscopic capabilities, however, clearly enhances the science return
- At modest R, suitable for extragalactic work, direct detection spectrometers are the instruments of choice
 - Large instantaneous bandwidths
 - Operate near photon limit
- At high R, such as that required for protostars (R > 10⁵) heterodyne spectrometers are the natural choice
- Consortium members have constructed a wide variety of direct and heterodyne spectrometers transferable to CCAT
- These instruments continue to "evolve" and be replaced by better instruments as technology improves

CCAT Feasibility/Concept Study Review 17-18 January 2006

ZEUS – 1			
Redshift (z) and Early Universe	ZEUS PropertiesCAT		
 Spectrometer (ZEUS) Long slit echelle grating spectrometer Designed for use in the 350, 450, 610 µm talluric windows in 5th/4th and 3rd order of 	Echelle Order	Spectral Range (µm)	Resolving Power R
• Employs a 1×32 pixel thermister sensed		185 to 211	1280 to 2700
bolometer array yielding 3.2 % BW at R = 1000	8	208 to 237	1140 to 2400
 Upgradeable to 12 × 64 pixel TES array to extend coverage to 6.4%, and 12 beams on the sky – well configured for resolved 	6	278 to 316	850 to 1800
 hearby galaxies Low cost future improvements 	5	333 to 379	710 to 1500
• Cover more windows: Open up 8 orders of the echelle with a filter wheel	4	416 to 474	570 to 1200
 Convert to a multi-object spectrometer: Can implement "fiber optics" system feeding multiple point sources to the long 	3	555 to 632	430 to 900
Slit CCAT Feasibility/Concept Study Review 17-18 January 2006	2	832 to 948	285 to 600

Future Instruments for CCAT

- High priority is the implementation of multiobject spectrometers
- \diamond We also are investigating a 40 μm diffraction limited imaging

CCAT Feasibility/Concept Study Review 17-18 January 2006