

CCAT Optical Design Parameters					
Design: Ritchey-Chrétien/Nas	smyth F	ocus			
Input Design Parameters	Symbol	Value	Units		
Aperture Diameter Primary Focal Ratio System Focal Ratio	D f1/D f/#	25 0.6 f/8	[m]		
Back Focal Distance Field of View Minimum Operating Wavelength	Β FOV λmin	11 20 200	[m] [arcmin] [μm]		
CCAT Feasibility/Concept Study Review 17-18 January 2006					

	Ritchey-Chrétien Design	Para	meters		
		2 0/2 0/2		:	CCAT
	Design: Ritchey-Chrétien/Nas	smyth	Focus		
	Derived Design Parameters	Symbol		Units	
	M1 Diameter	D1	25	[m]	
	Eccentricity Vertex Radius of Curvature	ε1 R C1	1.000774 30.000	[m]	
	Focal Distance	f1	15.000	[m]	
	Edge Angle from Prime Focus	θ1	45.24	[deg]	
	M2 Diameter (with provisions for FOV)	D2	3.20	[m]	
	Eccentricity	82	1.169098		
	Vertex Radius of Curvature Edge Angle from Secondary Focus	R _{C2} θ2	3.922 3.58	[m] [dea]	
		02		[
CCA	AT Feasibility/Concept Study Review 17-18 January 2006		H		

CCAT Filed of View Parameters						
	Symbol	Value	Units			
Specified Field of View Image Scale at Nasmyth Focus Optimum Radius of Curvature Size of 20 arcmin FOV Diffraction Spot-size at 200 µm	FOV IMS R _ø	20.0 1.031 1.938 1.164 1.920	[arcmin] [arcsec/mm] [m] [m] [mm]			
Calculated Angular Aberrations	Symbol	Value	Units			
Specified Field of View Angular Tangential Coma Angular Astigmatism Angular Distortion	FOV ATC AAS ADI	20.0 0.00 2.83 0.48	[arcmin] [arcmin] [arcmin] [arcmin]			
CCAT Feasibility/Concept Study Review 17-18 January 2006						

	Wavelength: 200 [µm] Frequency: 1499 [GHz]							
		Uniform Ilumination	Edge Tape -11 dB					
H	HPFW Beam Width:	1.861	1.983	[arcsec]				
A	Aperture Strehl:	100.00	100.00	[%]				
F	Polarization Efficiency:	100.00	100.00	[%]				
E	Beam Efficiency:	76.21	85.97	[%]				
A	Aperture Plane Efficiency:	98.73	87.58	[%]				
	Spillover Efficiency		88.37	[%]				
A	Antenna Gain:		110.76	[dB]				
	Overall Antenna Efficiency:		77.40	[%]				
9	Side Lobe Level (SLL):	-16.70	-22.27	[dB]				
(Cross-Polarization Level:	-326.30	-326.73	[dB]				

Wavelength Frequency	n: 200 [µm : 1499 [G⊦	n] Iz]		æ
	Uniform Illumination	Edge Tape -11 dB		
HPFW Beam Width:	1.892	2.008	[arcsec]	
Aperture Strehl:	96.75	98.39	[%]	
Polarization Efficiency:	99.99	99.99	[%]	
Beam Efficiency:	74.41	84.65	[%]	
Aperture Plane Efficiency:	95.59	85.41	[%]	
Spillover Efficiency		88.37	[%]	
Antenna Gain:		110.66	[dB]	
Overall Antenna Efficiency:		75.48	[%]	
Side Lobe Level (SLL):	-15.71	-20.89	[dB]	
Cross-Polarization Level:	-51.21	-52.63	[dB]	
X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXX			

M2 Positioning Requirements at 200 µm						
	Focus ∆z [µm]	De-center $ \Delta x^2 + \Delta y^2 ^{\frac{1}{2}}$ [μ m]	Tilt eqv ∆θ xØм₂ [μm]	Tilt ∆θ [arcsec]		
Image Quality: Strehl > 95%	< 80.0	< 380.0	<1,085.	< 70.0		
Pointing: ΔθΒΕΑΜ < HPBW /10		< 18.1	<u>< 16.0</u>	< 1.03		
Ø _{M2} = 3.20 [m] z _S = 1.20 [m]						

Best Fitted Ruze's Coeff	icients		T A		
Ruze's Coefficient					
$-\left(\frac{4\pi \kappa_i \sigma_i}{\lambda}\right)^2$					
$\eta_{RUZE_i} = e \left(\begin{array}{c} c \\ c \end{array} \right)$	Symbol	Best Fitted Value			
Segment Piston Displacement	Кz	0.95424			
Segment Tilt/Tip (Equiv. Edge Displacement*)	Ktilt	0.49903			
Segment Radial Displacement	Кх	0.01543			
Segment Azimuth Displacement Segment Twist (Equiv, Edge Displacement*)	Ку	0.01468			
Cegment (Wist (Equiv. Edge Displacement)	KIWISI	0.00073			
$\epsilon_{rms} = \sqrt{(\kappa_z \sigma_z)^2 + (\kappa_{tilt} \sigma_{tilt})^2 + (\kappa_x \sigma_x)^2 + (\kappa_y \sigma_y)^2 + (\kappa_\omega \sigma_\omega)^2}$					
* Panel Base Size = 2.0 [m]					
CCAT Feasibility/Concept Study Review 17-18 January 2006					

Conclusions Cont...

- We have analyzed the segmentation effect of an active surface CCAT. The gaps between segments produce a series of grating lobes levels about –31 dB down, and are distributed with a six-fold symmetry in the far field pattern.
- We have calculated the effects, in terms of Strehl ratio, of random segment positioning errors of the active surface, including piston, tilt/tip, lateral displacement and twist segment errors.
- We have found a set of coefficients relating the standard deviation of a
 particular segment positioning error with its resultant structural rms surface
 error. We have concluded that the piston errors have the largest effect on
 the antenna performance, followed by tip/tilt errors being half as important.
- Although, segment piston, and tilt/tip errors are directly controllable by the active surface actuators, we found that un-controllable lateral segment displacements may be compensated by tip/tilt corrections.
- Segment twist errors are not controllable, neither can be compensated by a piston-tilt actuator system alone. Nevertheless, telescope performance is very insensitive to twist errors.
- We have calculated the effects of a uniform thermal expansion of the backstructure by a factor of 1.0005x. This produces a quadratic phase error distribution across of each of the segments, and a overall defocusing of the telescope. After refocusing the achievable Strehl ratio is better than 97%.

CCAT Feasibility/Concept Study Review 17-18 January 200

