

Outline

- Telescope Optical Parameters and Design
- FOV Performance Analysis
- Sub-reflector Sensitivity Analysis
- Active Surface Segmentation Analysis
- Conclusions

CCAT' Optical Design Parrmeters

Design: Ritchey-Chrétien/Nasmyth Focus

mnut ${ }^{\text {a }}$	Symbol	Value	Units
Aperture Diameter	D	25	[m]
Primary Focal Ratio	f_{1} / D	0.6	
System Focal Ratio	f/\#	f/8	
Back Focal Distance	B	11	
Field of View	FOV	20	[arcmin]
Minimum Operating Wavelength	$\lambda_{\text {min }}$	200	[$\mu \mathrm{m}$]

Ritchey-Chrétien Design Parameters

Design: Ritchey-Chrétien/Nasmyth Focus			
Derived De.	Symbol	Value	Units
M1 Diameter	D_{1}	25	[m]
Eccentricity	ε_{1}	1.000774	
Vertex Radius of Curvature	$\mathbf{R}_{\text {C1 }}$	30.000	[m]
Focal Distance	f_{1}	15.000	[m]
Edge Angle from Prime Focus	θ_{1}	45.24	[deg.
M2 Diameter (with provisions for Fov)	D2	3.20	[m]
Eccentricity	ε_{2}	1.169098	
Vertex Radius of Curvature	$\mathrm{R}_{\mathrm{C} 2}$	3.922	[m]
Edge Angle from Secondary Focus	θ_{2}	3.58	[deg]

FOV Charecteristic's

- FOV Size and radíus of Curvature
- Performance on-axis and at edge of FOV
- Calculated Co-Pol and Cross-Pol performance

Performance Variation across FOV

- Strehl
- HPBW
- Sidelobe level
- Antenna Gain loss (with -11 dB Edge Taper)
- Antenna aperture efficiency (with-11 dB Edge Taper)
- Available Number of Beams in the FOV

FOV: Optimum F'ocal Surface Geometry

CCAT Feasibility/Concept Study Review 17-18 January 2006

On Axis Performance

Wavelength: $200[\mu \mathrm{~m}]$ Frequency: 1499 [GHz]

Uniform Edge Taper
Illumination -11 dB

HPFW Beam Width:	1.861	1.983	[arcsec]
Aperture Strehl:	100.00	100.00	[\%]
Polarization Efficiency:	100.00	100.00	[\%]
Beam Efficiency:	76.21	85.97	[\%]
Aperture Plane Efficiency:	98.73	87.58	[\%]
Spillover Efficiency	-------	88.37	[\%]
Antenna Gain:	-------	110.76	[dB]
Overall Antenna Efficiency:	-------	77.40	[\%]
Side Lobe Level (SLL):	-16.70	-22.27	[dB]
Cross-Polarization Level:	-326.30	-326.73	[dB]

Performance at Edge of 20^{\prime} FOV
Wavelength: $200[\mu \mathrm{~m}]$
Frequency: 1499 [GHz]
$\begin{array}{lc}\text { Uniform } & \text { Edge Tape } \\ \text { Illumination } & -11 \mathrm{~dB}\end{array}$

HPFW Beam Width:	1.892	2.008	[arcsec]
Aperture Strehl:	96.75	98.39	$[\%]$
Polarization Efficiency:	99.99	99.99	$[\%]$
Beam Efficiency:	74.41	84.65	$[\%]$
Aperture Plane Efficiency:	95.59	85.41	$[\%]$
Spillover Efficiency	--------	88.37	[\%]
Antenna Gain:	------	110.66	[dB]
Overall Antenna Efficiency:	------	75.48	$[\%]$
Side Lobe Level (SLL):	-15.71	-20.89	[dB]
Cross-Polarization Level:	-51.21	-52.63	[dB]

FOV Performance at 200 um

At 10' Radius

Far Field Radiation Pattem [dB]

Cross-Pol Radiation Pattern [dB]
CAT Feasibility/Concept Study Review 17-18 January 2006

Strehil Ratio vs, Number of Beams $\lambda=200 \mu \mathrm{~m}$, Uniform Illumination

CCAT Feasibility/Concept Study Review 17-18 January 2006

Sub-Reflector' Sensitivity Analysis

- Sub-reflector Sensitivity
- focusing
- De-Centering
- Tilt/Tip

Beam Deviation due to Sub-Reflector motion

- Set limits for sub-reflector positioning based on
- Image quality
- Pointing requirements.
- Analyzed the image characteristics for subreflector chopping

Sub-Reflector Sensitivity Analysis

FOCUSING

DE-CENTER

TILT

Strehil Ratio vs, M2 Positioning

[^0]
Beam Deviation and M2 Chopping

Beam Deviation vs. MI2 De-Centering

M2 Positioning Requirements at 200 ,um

Focus	De-center	Tilt eqv	Tilt
$\|\Delta z\|$	$\left\|\Delta x^{2}+\Delta y^{2}\right\|^{1 / 2}$	$\|\Delta \theta\| \times \emptyset \mathrm{M}_{2}$	$\|\Delta \theta\|$
$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$	$[\mu \mathrm{m}]$	$[\operatorname{arcsec}]$

Image Quality: Strehl $>95 \%$	<80.0	<380.0	$<1,085$.	<70.0
Pointing: $\triangle \theta_{\text {beam }}<H P B W$ I10	-------	<18.1	≤ 16.0	<1.03

Active Surface Segnentation

We analyzed an active surface composed of 162 pieshaped segments distributed with 6-fold symmetiry in 6 rings

- Grating lobes symmetry, power level and location in the far field.
- Segment Positioning Error Analysis
- For Segment Piston errors, tilt/tip errors, radial and azimuth segment positioning errors, segment twists.
- Characterization of Segment positioning errors in terms of Ruze's coefficients relating segment position standard deviation errors with optical performance.
- Thermal expansion effects.

Segment Positioning Error's

TILT/TIP
$\Delta \phi$: Uniform Distrib. [0, $2 \pi]$ $\Delta \theta$: Gaussian Distributed, zero mean $\sigma \theta$: Standard dev.

Segment Positioning Errors S'amples I

Segment Piston Errors: oz= $6 \mu \mathrm{~m}$

Segment Tilt Errors: $\sigma 0=3$ arcsec

Strehl vs, Segment Positioning Eir'or's

Piston Errors

Segment Positioning Errors Samples II

Segment Piston Errors: $\sigma x=0.3 \mathrm{~mm}$

Phase Distribution at Aperture $[\lambda]$

Phase Distribution at Aperture [$\lambda]$
Seam=1.95" $\quad 3.4^{\prime} \times 3.4^{\prime}$

CCAT Feasibility/Concept Study Review 17-18 January 2006

Segment Piston Errors: $\sigma y=0.3 \mathrm{~mm}$

Phase Distribution at Aperture [$\lambda]$

Strehl vs. Segment Positioning Errors

Combined Radial + Azimuth/Errors

Segment Lateral Displacement Standard Deviation $\sigma_{x}, \sigma_{y}[\mathrm{~mm}]$

Segment Twist Errors

Equivalent Edge Standard Deviation $\sigma_{r} \omega[\mathrm{~mm}]$
$\eta_{R U Z E_{i}}=e^{-\left(\frac{4 \pi \kappa_{i} \sigma_{i}}{\lambda}\right)^{2}}$

Segment Piston Displacement
Segment Tilt/Tip (Equiv. Edge Displacement*)
Segment Radial Displacement

Symbol	Best Fitted Value
Kz	0.95424
KтuT	0.49903
кх	0.01543
ку	0.01468
Krwss	0.00073

Segment Twist (Equiv. Edge Displacement*)

$$
\epsilon_{r m s}=\sqrt{\left(\kappa_{z} \sigma_{z}\right)^{2}+\left(\kappa_{t i l t} \sigma_{t i l t}\right)^{2}+\left(\kappa_{x} \sigma_{x}\right)^{2}+\left(\kappa_{y} \sigma_{y}\right)^{2}+\left(\kappa_{\omega} \sigma_{\omega}\right)^{2}}
$$

* Panel Base Size $=2.0[\mathrm{~m}]$

CCAT Feasibility/Concept Study Review $17-18$ January 2006

Conclusions

- We have designed a 25 m f/8 Symmetric Reflector Sub-Millimeter telescope in a double Nasmyth Ritchey-Chrétien configuration with a FOV of 20'.
- The optimal focal surface has a diameter of 1.16 m , and a radius of curvature of 1.94 m . The calculated Strehl ratio variations over this FOV are better than 97%
- The 20 arcmin FOV is capable to accommodate up to 1200×1200 (Nyquist Sampled) Pixels at $200 \mu \mathrm{~m}$.
- The calculated maximum Cross-polar level at the edge of FOV are -51 dB and -52 dB for uniform and Gaussian illumination, respectively.
- The Far Field Side-Lobe Level (SSL) over the FOV is $>-16 \mathrm{~dB}$ with an uniform Illumination, and better than -20 dB with a -11.0 dB Gaussian illumination taper.
We have obtained the sub-reflector sensitivities for focusing, de-centering and tilt/tip motion.
- A pointing requirement of θ HPFw/10 at $200 \mu \mathrm{~m}$, imposes a maximum decentering of the sub-reflector of $<18 \mu \mathrm{~m}$, and maximum edge-to-edge displacements of the sub-reflector, resulting from tillt/tip, between $14 \mu \mathrm{~m}$ and $24 \mu \mathrm{~m}$, depending on the location of the center of rotation.
- Maximum chopping amplitude is limited to 10 beam widths for 90% or better Strehl ratio at $200 \mu \mathrm{~m}$, and maximum defocusing of $<80 \mu \mathrm{~m}$. CCAT Feasibility/Concept Study Review 17-18 January 2006

Conclusions Cont...

* We have analyzed the segmentation effect of an active surface CCAT. The gaps between segments produce a series of grating lobes levels about -31 dB down, and are distributed with a six-fold symmetry in the far field pattern.
- We have calculated the effects, in terms of Strehl ratio, of random segment positioning errors of the active surface, including piston, tilt/tip, lateral displacement and twist segment errors.
- We have found a set of coefficients relating the standard deviation of a particular segment positioning error with its resultant structural rms surface error. We have concluded that the piston errors have the largest effect on the antenna performance, followed by tip/tilt errors being half as important.
- Although, segment piston, and tilt/tip errors are directly controllable by the active surface actuators, we found that un-controllable lateral segment displacements may be compensated by tip/tilt corrections.
- Segment twist errors are not controllable, neither can be compensated by a piston-tilt actuator system alone. Nevertheless, telescope performance is very insensitive to twist errors.
- We have calculated the effects of a uniform thermal expansion of the backstructure by a factor of $1.0005 x$. This produces a quadratic phase error distribution across of each of the segments, and a overall defocusing of the telescope. After refocusing the achievable Strehl ratio is better than 97\%

CCAT Feasibility/Concept Study Review 17-18 January 2006

[^0]: CCAT Feasibility/Concept Study Review 17-18 January 2006

