

CCAT Feasibility/Concept Study Review 17-18 January 2006

CCAT Science - II

What is the nature of the dark matter and dark energy?

- CCAT will image hundreds of clusters of galaxies selected from current and planned southern-hemisphere cluster searches (via the Sunyaev-Zeldovich Effect).
- CCAT imaging will be important in understanding how clusters form and evolve, and in interpretation and calibration of the survey data to constrain crucial cosmological parameters ($\Omega_{\rm M}$, Ω_{Λ} , dark energy equation of state) independently of other techniques (Type Ia supernova and (direct) CMB measurements).

How do stars form?

- CCAT will survey molecular clouds in our Galaxy to detect the (cold) cores that collapse to form stars, providing for the first time a complete survey of the star formation process down to very low masses.
- In nearby molecular clouds, CCAT will be able to detect cold cores down to masses well below that of the lowest mass stars $(0.08 \ M_{\odot})$.

Selected (Key) Facility Drivers

- Field-of-view (5' x 5' initially, up to 20' across eventually)
 - The major role of CCAT will be its unchallenged speed for moderateresolution wide-field surveys
 - CCAT strongly complements ALMA (which will do follow-up)

Chopping/Scanning

- Bolometer arrays require modulating the signal through chopping and/or scanning the telescope
- For chopping, this must be done at the secondary (~ 1' at ~ 1Hz)
- Scanning requires moderately large accelerations for reasonable efficiency (~ 0.2 deg/sec²) [R];
- **Pointing & Guiding**
 - For spectrographs require placing to a fraction of slit width
 - And guiding to maintain spectrophotometric accuracy
 - => 0.61" [R] and 0.35" [G] arcsec pointing/guiding (1D rms)
- Precipitable Water Vapor
 - Provide significant observing time at 350/450 μm

Time Available to Observe												
	Band		Time	Ref.	Sairecabur (5500 m)			ALMA (5050 m)			CCAT	
			to CL	PWV	Time Avai	ilable	CL fields	Time Avai	lable	CL fields		
	[µm]	[GHz]	[hr]	[mm]	[hr yr ⁻¹]	[%]	[yr ⁻¹]	[hr yr ⁻¹]	[%]	$[yr^{-1}]$		
	200	1500	1248	0.26	281	∕3		84	1			
	350	857	0.86	0.47	1936	22	2244	1084	12	1257		
	620	484	1.14	0.64	716	8	629	723	8	634		
	740	405	0.43	0.75	639	/7	1488	690	8	1607		
	865	347	0.28	0.86	1223	14	4413	1205	14	4348		
	1400	214	0.30	1.00	1517	(17)	5093	1299	15	4361		
	Tir	ne (PWV	′ < 1.1 m	m)	6312	72	KHT	5084	58			

Number of hours/year (round the clock) available for observing at a given λ (PWV) for Sairecabur (5500 m) vs. the ALMA region (5050 m). "CL fields" is the number of fields that can be observed to the confusion limit over a year. The "Total Time" is the sum of available hours and represents all time (day or night) with PWV < 1.1 mm. Because observations at some wavelengths require similar conditions, i.e., 350 μ m and 450 μ m, they share a common range. Note that at CSO, 350 μ m observations are done when PWV < 0.9 mm.

Time to Complete Programs										
Ва	Band		Time Av	ailable	Science	Time to Complete				
λ	ν		Sairecabur (5500 m)	ALMA (5050 m)	Program Time	Sairecabur (5500 m)	ALMA (5050 m)			
(µm)	(GHz)	(mm)	(hr yr ⁻¹)	(hr yr ⁻¹)	(hr)	(yrs)	(yrs)			
200	1500	0.26	281	84	204	0.7	2.4			
350	857	0.47	1936	1084	4881	2.5	4.5			
620	484	0.64	716	723	5832	8.1	8.1			
740	405	0.75	639	690	256	0.4	0.4			
865	347	0.86	1223	1205	1128	0.9	0.9			
1400	214	1.00	1517	1299	350	0.2	0.3			

"Science program time" is the total time to perform the baseline science for camera observations only – this does not include spectroscopic followup. This is the on-sky integration time needed according to best estimates of the sensitivity and does not include observing overhead or other inefficiencies.

