Fabrication Strategies for Light Weight Optics

Presented by Mel Ulmer^a

Co-Authors: Michael E. Graham, Semyon Vaynman, Matvey Farber, Jonathan Echt (Northwestern University), Steve Varlese and Gary Emerson (Ball Aerospace & Technology Corp.) and Dean Baker (Advanced Powder Solutions)

a: e-mail m-ulmer2@northwestern.edu; phone 847.491.5633; web page

http://www.astro.northwestern.edu/~ulmer

Goal:

Light weight (< 1 kg/m²)

High quality (<1 arc sec)

For Plasma Spraying, What are we dong differently?

Spray on Electroformed shell (100 microns thick for now), then laminate by more electro-forming on back

Use Ni coated micro-spheres rather than alumina

Comparative advantages for plasma spraying:

In house patented small particle (down to sub- 1 micron); typical particle sizes used = 50-100 microns

Small sizes may be important to prevent print-through

Preliminary Results on plasma spraying

With 100 micron particles; 30 microns ones to be done in the future

Background info re micro-spheres, Part I

Proof of concept study for light weight X-ray and visible light optics

Cylinder: Density of material is 4.7 g/cm³ and the areal density is about 2.3 kg/m². The cylinder is laminate of a 100 μ m thick Ni layer, a 200 μ m thick layer of plasma sprayed micro-spheres, and another 100 μ m thick Ni layer.

RMS deviation from master = 4 microns over 5 cm , corresponding to about 17 arcseconds

The "hockey puck" was made by a sintering process. For reasons yet TBD, we cannot directly plate this, but we can 200 μ m thick versions. In order to metal plate to be able to polished, we first coated with epoxy, then evaporated gold for conductivity, and then electroplated about 100 μ m Ni which we then polished. Goal is to meet NASA request of 1/100 wave figure at HeNeAr, 0.2 nm smoothness, and 15 kg/m²

Ni/sprayed/Ni laminated 5 cm dia. flat: areal density, 2 kg/m²; 140 μ m front/back of and 120 μ m of sprayed micro-spheres; 7.3 gm = 3.7 kg/m²

Mirror and mandrel together, both 5 nm smooth

NB for cryo mirror applications, dipping in liquid N_2 had no effect

Straight line test on flat; profiler measurements show deviation from flat of $1/3 \lambda$ (600 nm); smoothness on 5 nm 10-100 µm scale; <0.2 µm over 3 mm

"Puck" w/Epoxy

- Epoxy applied to the surface of the "puck" with doctor's blade
- Surface polished
- Gold layer (10 nm) is sputtered
- Bright Ni (100 microns) is electroplated
- Surface is polished

"Puck" w/plasma-sprayed Ni

- Ni (100 microns) is plasma-sprayed on the surface of the "puck"
- Surface polished
- Bright Ni (20 microns) is electroplated
- Surface is polished

Densities

	Density, g/cm ³	Areal Density, kg/m ²	Average Thickness, mm
Cylinder (Ni-plate+plasma spray+Ni-plate)	4.72	2.31	0.5
Puck (epoxy+gold+Ni-plate)	1.89	3.96	8.0
Puck (Ni-plasma+Ni-plate)	2.18	2.60	4.5

For cylinder:

CTE about 4.2*E-6 versus 2.4E-6 CVD SiC Density = 4.7 g/cm^3 versus 3.2 g/cm^3 CVD SiC

Two Actuator Concepts

Concluding Remarks:

- Plasma spray shows promise for light weight mirrors, and actuators are fall back
- Facilities available to test with and without Actuators
- Technology Exists to Enhance High Energy Reflectivity

Funding Sources:

NASA Space Grant to Illinois

NASA STTR