Atacama Submillimeter Telescope Design Issues

David Woody Caltech Owens Valley Radio Observatory January 2005

outline

- General discussion
 - Major issues
 - Performance limits
- General approaches
- A design concept

First order decisions

- Collecting area
 500 m²
- Shortest wavelength
 - 200 μ m ? (15 μ m surface RMS)
- Budget
 - \$70M ??
- Site
 - Atacama, but where exactly???

Performance Issues

- Imaging quality
 - Pointing
 - Field of view
 - Sidelobes
 - Polarization purity
 - Beam shape (surfaces RMS and aberrations)
- Operating conditions (dome?)
 - Weather
 - Maintenance
 - Instrument packages
 - Solar loading
- Detector performance (loading, Tsys)
 - Blockage
 - Scattering
 - Spillover

What effects performance

- Environment
 - Wind
 - Sun
 - Gravity
- Materials
 - Steel
 - Aluminum
 - CFRP
- Geometry
 - Symmetric
 - Off-axis
 - ?
- Fabrication

Basic limits

- Gravity
- Thermal
- Wind
- Survival

Von Hoerner limits

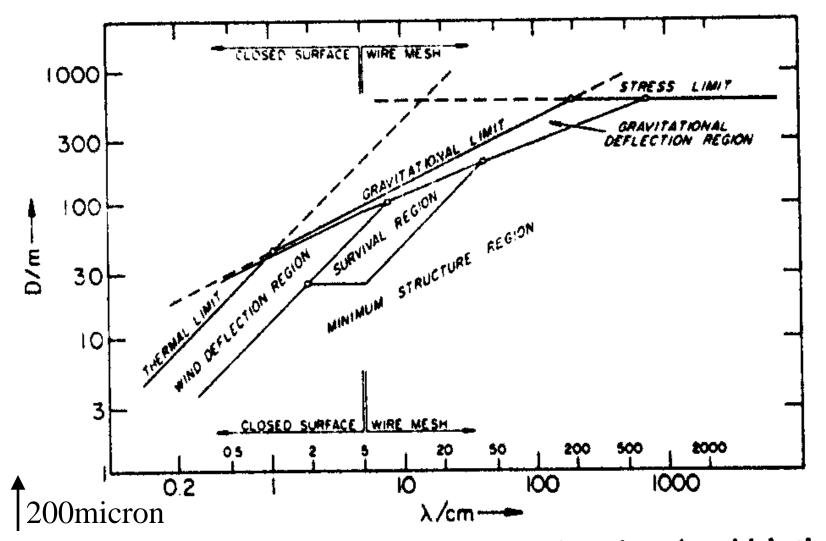


FIG. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

Material parameters

	Steel	CFRP	Aluminum	Invar
Density [lb/in ³]	0.283	0.061	0.097	0.291
Modulus [10 ⁶ lb/in ²]	30	17	10	22
CTE [10 ⁻⁶ /K]	12	0.2	23	1.6
Υ /ρ [10 ⁸ in]	1.1	2.8	1.0	0.8



FIG. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

So we need tricks

- Homology can beat gravity by ~10
- Actuators can beat thermal and gravity if
 - Stable measuring system
 - Stable reference system
- But wind is a major problem
 - First order => pointing errors
 - Pointing reference system or guide stars
 - Higher order distortions are very difficult
 - => Dome

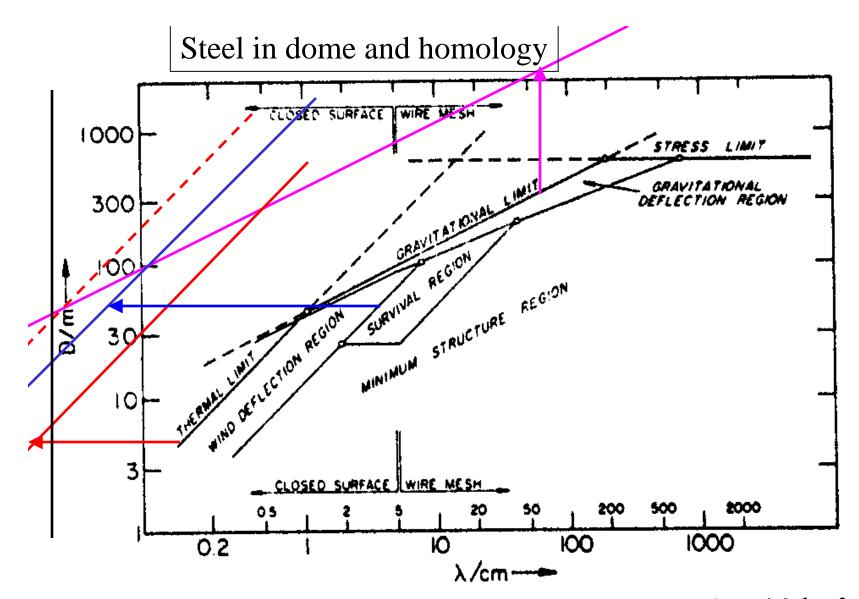


FIG. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

Dome

- + Decrease wind by 10
- + Better Survival
- + Good working conditions
- + Keep panels and structure dry
- + Less dust!!!
- Thermal?
 - Requires insulation
 - Good air circulation during day when closed

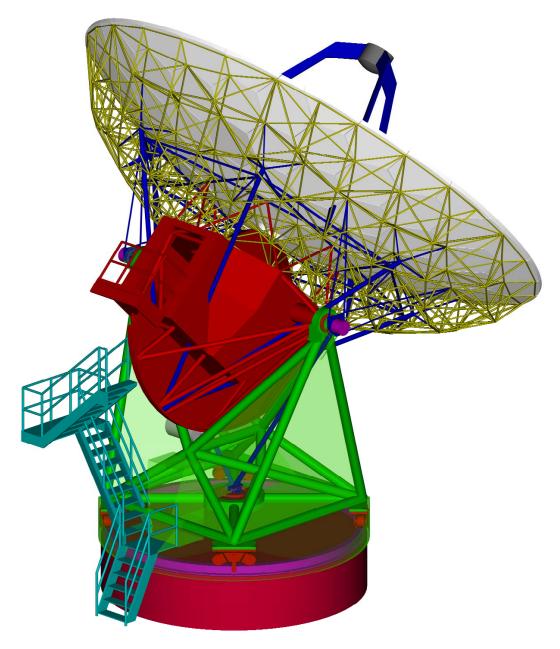
Steel vs. CFRP structure

- Steel structure
 - + Well understood
 - + Cheap
- Aluminum panels
 - + Well understood
 - + Cheap

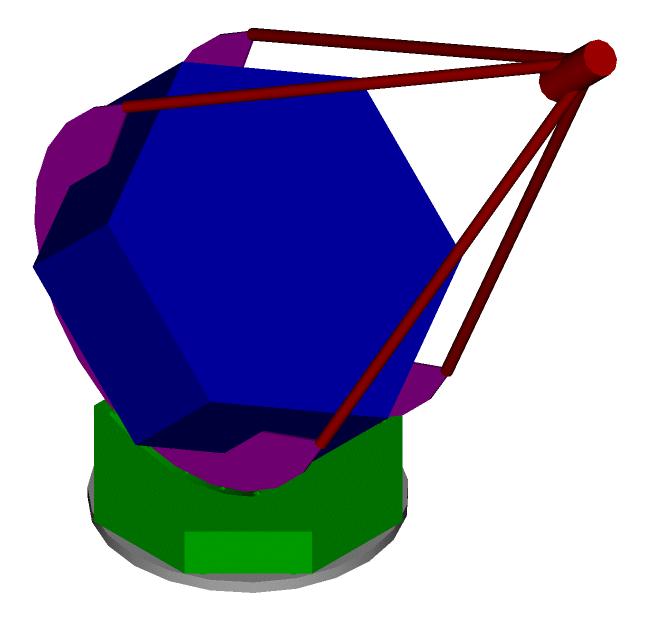
- CFRP structure
 - + Excellent CTE
 - + Light weight
 - Still requires research
- + CFRP panels
 - + Excellent CTE
 - + Light weight
 - Still requires research
 - Surface layer problems

Geometry

- Symmetric
 - + Best surface
 - + Best pointing
 - + Lowest cost
 - ~2% Feedleg blockage
 - Polarization
 - + Symmetric optics
 - Feedleg scattering
 - ? Effect of panel gaps

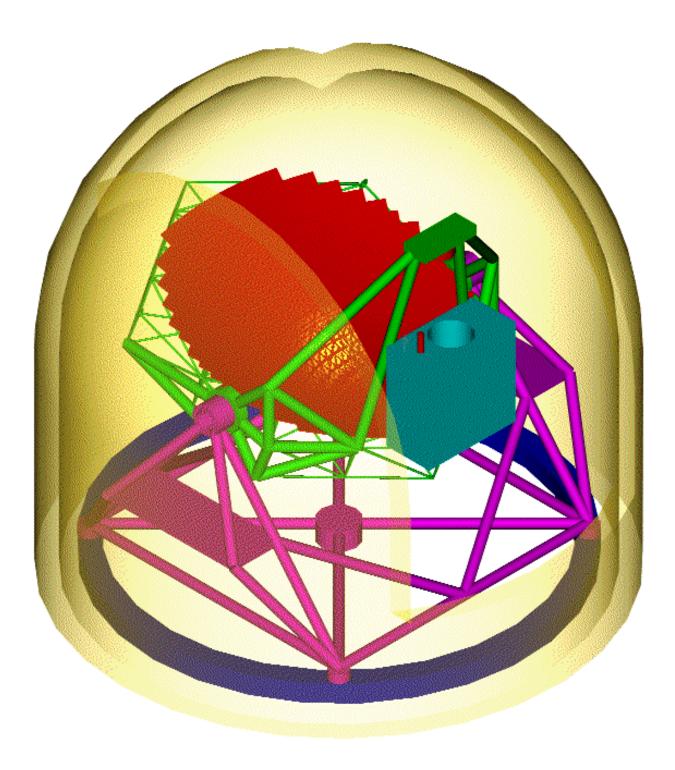

- Off-axis
 - + Best beam
 - + No feedleg blockage
 - Higher cost
 - ? Homology
 - Polarization
 - + No feedleg scattering
 - asymmetric optics
 - ? Effect of panel gaps

Accuators


- + Relaxes homology, may be essential
- + Might help with thermal
- + Easy to adjust surface

- High costs
- Needs research
- No good reference structure available
- Software
- Maintenance

An ALMA concept



A previous CELT concept

Investigate an off-axis design

- Better imaging
- No blockage
- Receivers
 - Large volume with no relay optics
 - (large $A\Omega$ requires huge mirrors)
 - Nasmyth platforms?

Optics

- 25 m clear aperture
- Disk from 50 m f/d=.4 parabaloid
 Effective f/d=1
- Compact structure
 - Swept volume 21.5 m radius
 - Tipping structure can rotate 360 deg in elev.

Panels

- Bulk or cast aluminum
 - Machined surface
 - Heavy
 - Proven
- CFRP (CFRP or Al honeycomb)
 - Molded surface
 - Light weight
 - Low CTE
 - Surface unproven
- Electroplated Nickel
 - Replicated surface
 - Light weight
 - Can have optical surface finish or diffuse scattering
 - CTE probably limits size to 1 m² (insulate backside)

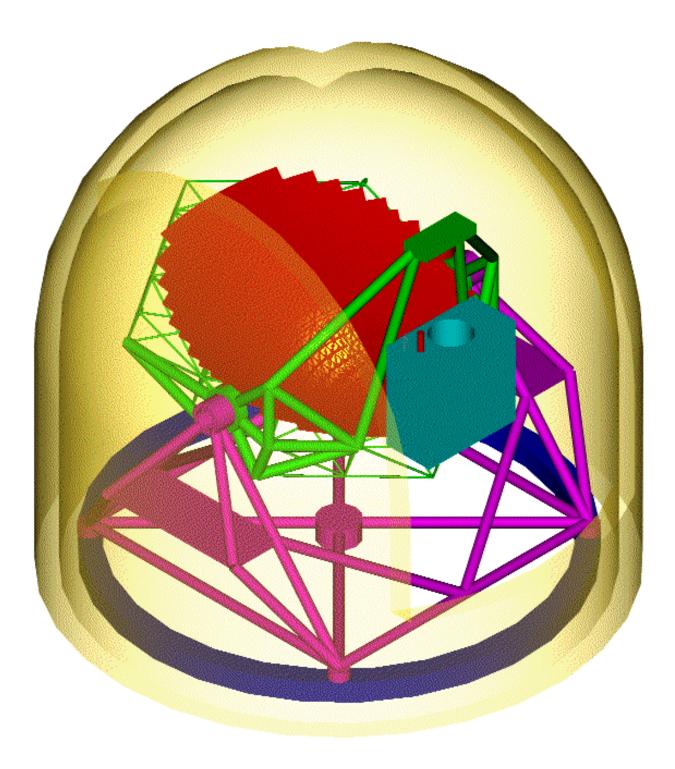
Raft concept

- Put 10-20 panels on a subframe
 - Fixed adjusters for the panels
 - Set panels on the raft in lab
- Raft ~ 10 m^2
 - 50 rafts
 - 3 actuators per raft
 - Stiff
 - Small gravity and wind distortions
 - Thermally stable
 - CFRP frame or insulated steel

Surface control

- Keck style edge sensors
 - On thermally stable rafts
- Laser interferometry
 - Many fixed sight lines
- Modulated laser absolute measuring system
 - Few scanning systems
 - Just beyond current state-of-the-art
- Wavefront sensor system
 - IR stars
- Shearing interferometer system
 - CSO has used this very successfully
- Out of focus holography

Drive system


- Critical for fast scanning and pointing
- Bearings
 - Hydrostatic
 - Smooth
 - Low friction
 - Messy
 - Wheels and roller bearings
 - Cheap?
 - Standard

Motors

- Commercial motors and standard gear trains (COTS)
 - Limited bandwidth
 - Torque ripple
 - Gear noise
 - May limit tracking performance
- Commercial motors friction drives
 - Difficult to develop high enough torques
 - Torque ripple
- Direct drive
 - Develop a standard ~2 m diameter on-axis motor
 - Use several identical motor on each axis
 - High bandwidth
 - Very smooth tracking (torque ripple within bandwidth)
 - expensive

Telescope concept

- Off-axis
- In dome
- Electroplated Nickel panels on CFRP rafts
- Modulated laser metrology
 - (corner reflectors formed into panels)
 - + shearing interferometer absolute meas. system
- Hydrostatic bearings
- Modular direct drive motors
- Optics details TBD

TABLE I: . FINITE ELEMENT ANALYSIS SUMMARY FOR REPRESENTATIVE LOAD CASES.

Case	Path	Path	Pointing	Pointing	1⁄2	1⁄2 WFE
	Change	Error	Change	Error	WFE	after fit
1 Crowity	494.0	-2.1	0.5	0.6	15.2	9.5
1 Gravity, zenith	494.0	-2.1	0.5	0.0	13.2	9.5
2 Gravity,	-11.1	-7.2	9.1	16.2	21.5	7.2
horizon						
3 Wind, zen.,	0.0	0.0	0.6	0.1	0.3	0.1
X-axis						
4 Wind, zen.,	0.1	0.0	1.1	0.1	0.3	0.1
Y-axis			0.0			<u> </u>
5 Wind, hor., X	0.0	0.0	0.3	0.3	0.5	0.2
axis 6 Wind, hor., Z	81.2	3.3	2.7	0.0	3.7	1.2
axis	01.2	5.5	2.7	0.0	5.7	1.2
7 Temp., zen.,	-348.0	-29.0	0.0	0.3	6.0	0.7
uniform 10 C	5 10.0	27:0	0.0	0.5	0.0	0.7
8 Temp., hor.,	382.0	-15.1	8.3	0.0	6.3	2.0
uniform 10 C						
9 Temp., hor.,	0.0	0.0	1.0	0.1	0.4	0.3
dT/dX=1C/m						
10 Temp., hor.,	93.3	-4.0	0.7	0.4	5.0	0.5
dT/dY=1C/m	1110	2.0	2.2	0.0	5.0	0.4
11 Temp., hor., $T(R)=.2R[m]^2$	111.0	-3.9	2.2	0.0	5.0	0.4
12 Temp., zen.,	2.2	0.7	1.1	0.1	1.5	0.6
meas. [Error!						
Bookmark not						
defined.]						

IABLE I: SURFACE ERROR BUDGET

Effective surface error [µm]	
Backing structure	
Gravity (ideal)	6
Gravity (departure from ideal)	3
Absolute temperature	6
Temperature gradient	5
Wind	4
Subtotal	11.0
Panel and supports	
Manufacturing	10
Absolute temperature	4
Temperature gradient	4
Gravity	5
Wind	5
Aging	3
Panel location in plane	2
Panel adjustment perpendicular to plane	3
Subtotal	14.0
Secondary mirror	
Manufacturing	5
Absolute temperature	2
Temperature gradient	2
Gravity	2
Wind	2
Aging	2
Alignment	5
Subtotal	8.4
Surface setting (holography)	
all contributions	10
Subtotal	10.0
Total (rss)	22.1

TABLE I: POINTING ERROR BUDGET

Pointing error [arcsec]		
Gravity (departure from ideal)	0.1	
Wind	0.3	
Absolute temperature	0.3	
Temperature gradient	0.4	
Encoders (24-bit)	0.1	
Metrology (tiltmeters and gap sensors)	0.1	
Reference structure (bearing slop and friction)	0.1	
Total	0.6	

Simple FEA

- Weight
 - Tipping weight 510,000kgm
 - Glass 150,000kgm
- Deflection of 250um p-p
- Remove glass => 176um p-p
- RMS => \sim 40um
- Improved homology expect => ~20um

Main issues

- Performance
 - Collecting area
 - Surface error
 - Pointing
 - Detector loading/Tsys
 - Scattering
 - Emission
 - Beam
 - Sidelobes
 - Polarization purity
- Cost
 - Design
 - Construction
 - Operations