Prospects for ground-based submillimeter spectroscopy:

New capabilities and challenges

Matt Bradford

Astronomical capability of a ground-based single-aperture telescope

Background-limited sensitivity:

NEFD ~
$$\frac{h\nu (n(n+1))^{1/2}}{\eta_{inst}\eta_{tel}\eta_{atm}A_{tel}(\Delta\nu)^{1/2}}$$

$$n = \varepsilon_{load} \eta_{inst} (e^{hv / kT} - 1)^{-1}$$

Telescope size, surface quality, site are important
→ ALMA will have large A
→ Single apertures can have large η's (sky and surface)
→ Broad bandwidth and multiple spatial beams provide

Cornell – Caltech Submillimeter Telescope Workshop

Matt Bradford

Challenges for far-IR through mm spectrometers for ground-based telescopes

Best use of good weather depends on scientific goals

- Spectral mapping of galactic regions, nearby galaxies:
 Optimize number of spatial elements with sufficient spectral coverage
- Galactic nuclei, point sources w/ known redshifts:
 → Optimize sensitivity w/ a few spectral elements → maximize throughput
- Follow up of point sources w/ unknown redshifts:
 → Maximize number of simultaneous spectral resolution elements (Width of telluric bands presents the fundamental limit) δv / v ~ 0.1
- The future → multi-object submm spectroscopy? → $\delta v / v \sim 0.1$ --0.4 *AND* N_{sources} ~ 10-100

Spectrometer Architectures

- Heterodyne receivers provide the highest spectral
 - Ret suffer from quantum poise $\sim hv [n (n+1) \delta v]^{1/2}$
 - Also offer limited bandwidth:
 - 10 GHz IF bandwidth at 1 THz gives ν / $\Delta\nu$ ~ 100
- Fourier transform spectrometer (FTS) couples the full
 - Sensitivity penalty
- Fabry-Perot naturally accommodates spectral mapping
 - But scanning time results in sensitivity penalty, esp for searching
- Grating spectrometer is the best choice for point sources
 - 1^{st} order \rightarrow octave of instantaneous bandwidth
 - Good efficiency
 - But only moderate resolution

Instrument size an issue for long λ grating systems Conventional broadband grating systems are huge when scaled to λ ~100 μ m

For example: SIRTF IRS Long-Hi module: 40 x 15 x 20 cm for R=600 at 37 μ m. \rightarrow For 200 μ m, this module would be over 2 meters in size.

→Much larger than required by fundamental limit: $L \sim R \times \lambda$.

SIRTF IRS long-high module--Roellig et al. 1999

2

A solution – curved grating in waveguide

Each facet positioned to provide perfect performance at two frequencies

➔ System is diffraction-limited over the full band.

New work in submillimeter-wave broadband systems: Z-Spec for CSO / 30 m / LMT

Cornell – Caltech Submillimeter Telescope Workshop

11 Oct 2003

Matt Bradford

Summary -- toward the future

- A very large single-aperture telescope at the world's best site can provide a spectroscopy platform with raw sensitivity approaching that of ALMA in the short submillimeter windows
 - And large bandwidth and / or many spatial beams can provide a substantial advantage for spatial / spectral surveying
 - 200 μm window is completely unique to Atacama (or South Pole)
- Such a platform will allow probing of the dense atomic / ionized ISM at redshifts of up to 2 – near the peak of the star-formation activity.
- The submillimeter is the final technical frontier and spectrometer and detector technology will continue to improve and adapt to new scientific questions
 - Not all the photons focused in the field of the telescope are yet detected with $\delta v / v = 1000$!