Atacama Submillimeter Telescope

Cameras: 200-1000 µm

C. Darren Dowell (JPL/Caltech) 2003 October 11

Outline

- Detectors:
 - feedhorn arrays
 - filled pop-up arrays
 - filled 'waffle' arrays
 - photoconductors
- System design
 - optics what temperature?
 - coolers what temperature?
 - telescope surface
 - pointing and calibration

Feedhorn-Coupled Arrays

SCUBA

43 (+ 88 + 139 = 270) SPIRE/Herschel

Feed-Coupled and Filled Arrays

- For fixed field of view, 0.5 fλ filled arrays have 3.5 times greater mapping speed than 2 fλ feedhorns. (Griffin, Bock, Gear 2002)
- For fixed number of pixels, 2 fλ feedhorns are 1.5 times faster than 0.5 fλ filled arrays.

SHARC II "Pop-Up" Bolometer Array (GSFC)

G. Voellmer

'Waffle' Bolometer Arrays

- CEA: arrays up to 64×32 for PACS/Herschel photometer
 - Designed for $\lambda = 60-210 \ \mu m$
 - High resistance; MOSFET multiplexer
 - $-10^{-16} \mathrm{W Hz^{-1/2}}$
- ROE/NIST: SCUBA-2 80×80 arrays
 - 450 μm and 850 μm
 - TES; SQUID time-domain multiplexer
 - -10^{-17} W Hz^{-1/2} at 0.1 K
- Berkeley (+ frequency-domain SQUID MUX)
- JPL

CEA/PACS Bolometer Arrays

SCUBA-2 Arrays

Berkeley

JPL

Antenna-Coupled TES Array

Photoconductors

- Multiplexed large arrays
- Plenty of margin in NEP despite relatively high operating temp (few K)
- Can they handle the count rates for broadband applications?
- Wavelength coverage:
 - Unstressed Ge:Ga λ < 100 μ m
 - Stressed Ge:Ga λ < 200 μ m
 - Future: GaAs to $\lambda = 300 \ \mu m$?
- Stressed detector arrays have significant mechanical complexity.

PACS/Herschel, FIFI LS/SOFIA Stressed Photoconductors

Sensitivity and Loading Requirements

	circular	1.32 fλ	square	0.5 fλ
λ / PWV / airmass	Q	NEP _{ph} /3	Q	NEP _{ph} /3
μm / μm /	pW	W Hz ^{-1/2}	pW	W Hz ^{-1/2}
200 / 200 / 1.0	136	2.4×10 ⁻¹⁶	50	1.5×10 ⁻¹⁶
200 / 800 / 2.0	200	3.2×10 ⁻¹⁶	73	1.9×10 ⁻¹⁶
350 / 200 / 1.0	90	1.4×10 ⁻¹⁶	33	0.8×10 ⁻¹⁶
350 / 800 / 2.0	276	3.3×10 ⁻¹⁶	101	2.0×10 ⁻¹⁶
870 / 200 / 1.0	14	3.5×10 ⁻¹⁷	5	2.1×10 ⁻¹⁷
870 / 800 / 2.0	37	7.5×10 ⁻¹⁷	14	4.5×10 ⁻¹⁷

System Requirements

- Optics:
 - -4 K is fine for bare arrays at $\lambda < 700$ μ m.
 - Need to check situation for $\lambda = 850 \ \mu m$; SCUBA-2 planning on 1 K focal plane box.
- Refrigerator:
 - -0.3 K is fine for $\lambda < 700$ µm.
 - Need to check situation for $\lambda = 850 \ \mu m$; SCUBA-2 planning on 0.1 K.

Bolometers and Coolers

- I know of no instrument in the field with bolometers and a mechanical ~4 K cooler.
- Let's hope this works with TES's.

SHARC II 350 µm Sidelobes

CSO: $\eta \sim 0.3$

Caltech Submillimeter Observatory

Beam Shape/Elevation Dependence

contours: 5%, 10%, 20%, 50%

• Remedy: Use new surface correction system at CSO. $_{19}$

CSO Surface Correction System in Action

before

after

• April 2003; elevation $\approx 80^{\circ}$

SHARC II Observing Mode: Scanning without Chopping Secondary Mirror

Asteroids as Flux Calibrators

22

Blazars as Pointing References

23