Atacama Submillimeter Telescope Design Issues

David Woody
Owens Valley Radio Observatory
October 10, 2003

Main issues

- Performance
 - Collecting area
 - Surface error
 - Pointing
 - Detector loading/Tsys
 - Scattering
 - Emission
 - Beam
 - Sidelobes
 - Polarization purity
- Cost
 - Design
 - Construction
 - Operations

What effects performance

- Environment
 - Wind
 - Sun
 - Gravity
- Materials
 - Steel
 - Aluminum
 - CFRP
- Geometry
 - Symmetric
 - Off-axis
- Fabrication

Basic limits

- Gravity
- Thermal
- Wind
- Survival

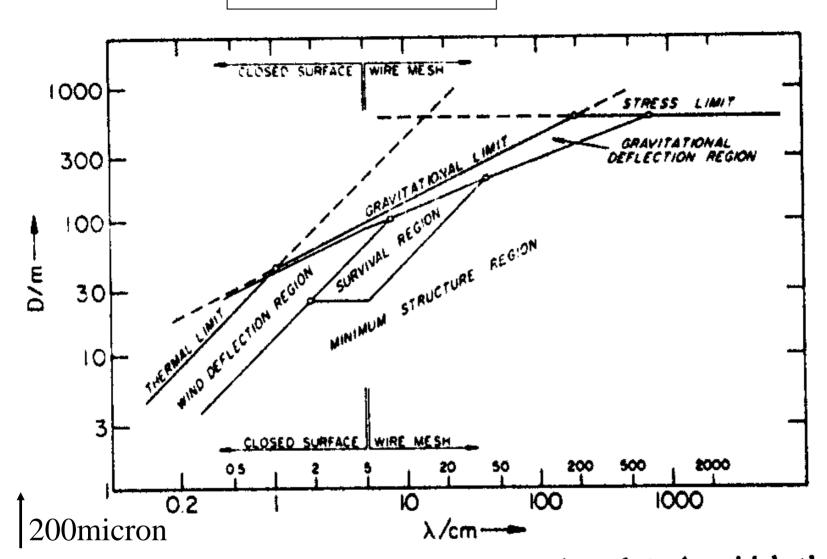


Fig. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

Material parameters

	Steel	CFRP	Aluminum	Invar
Density [lb/in ³]	0.283	0.061	0.097	0.291
Modulus [10 ⁶ lb/in ²]	30	17	10	22
CTE [10 ⁻⁶ /K]	12	0.2	23	1.6
Y/r [10 ⁸ in]	1.1	2.8	1.0	0.8

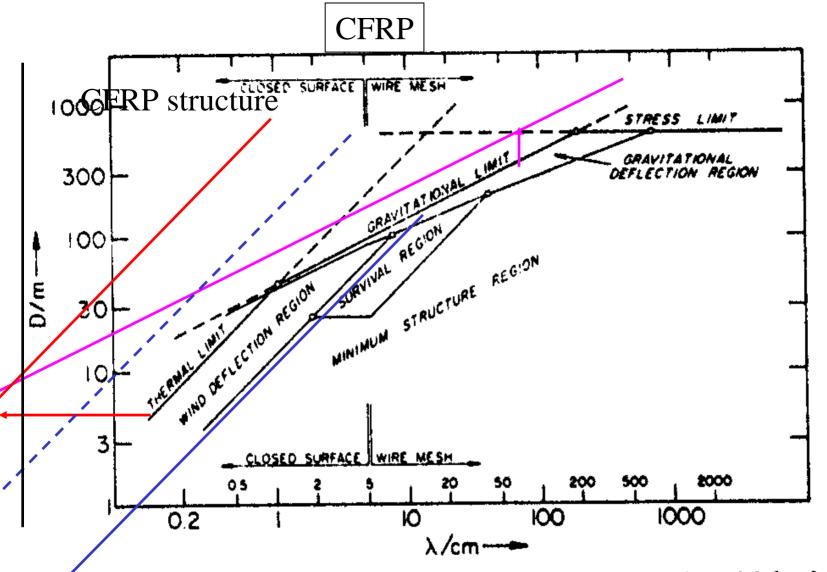


Fig. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

So we need tricks

- Homology can beat gravity by ~10
- Actuators can beat thermal and gravity if
 - Stable measuring system
 - Stable reference system
- But wind is a major problem
 - First order => pointing errors
 - Pointing reference system or guide stars
 - Higher order distortions are very difficult
 - => Dome

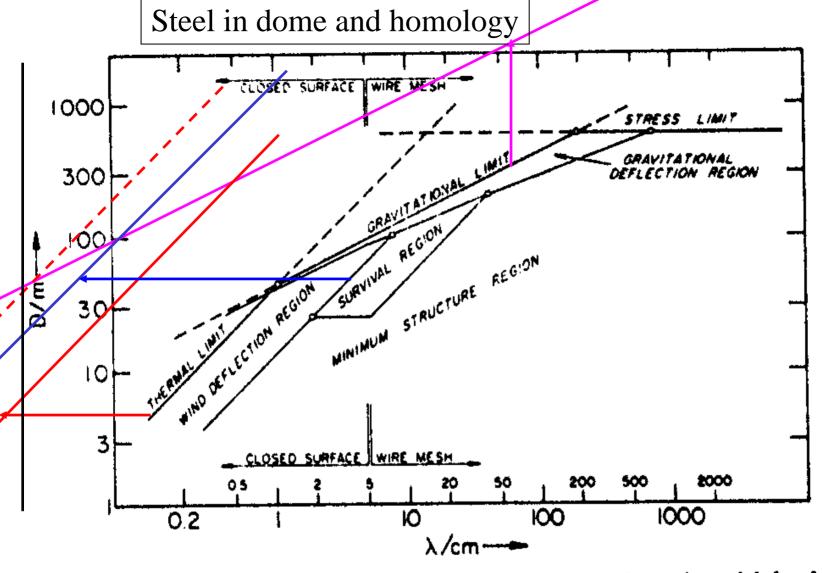


Fig. 3. Regions of diameter D and wavelength λ , in which the weight of the structure is defined by different conditions, and the three limits of Fig. 2.

Dome

- + Decrease wind by 10
- + Decrease thermal by 10
- + Better Survival
- + Good working conditions

- High costs
- Detector loading?

Steel vs. CFRP structure

- Steel structure
 - + Well understood
 - + Cheap
- Aluminum panels
 - + Well understood
 - + Cheap

- CFRP structure
 - + Excellent CTE
 - + Light weight
 - Still requires research
- + CFRP panels
 - + Excellent CTE
 - + Light weight
 - Still requires research
 - Surface layer problems

Geometry

- Symmetric
 - + Best surface
 - + Best pointing
 - + Lowest cost
 - ~2% Feedleg blockage
 - Polarization
 - + Symmetric optics
 - Feedleg scattering
 - ? Effect of panel gaps

- Off-axis
 - + Best beam
 - + No feedleg blockage
 - High cost
 - ? Homology
 - Polarization
 - + No feedleg scattering
 - asymmetric optics
 - ? Effect of panel gaps

Accuators

- + Relaxes homology, may be essential
- + Might help with thermal
- + Easy to adjust surface

- High costs
- Needs research
- No good reference structure available
- Software
- Maintenance

An ALMA concept

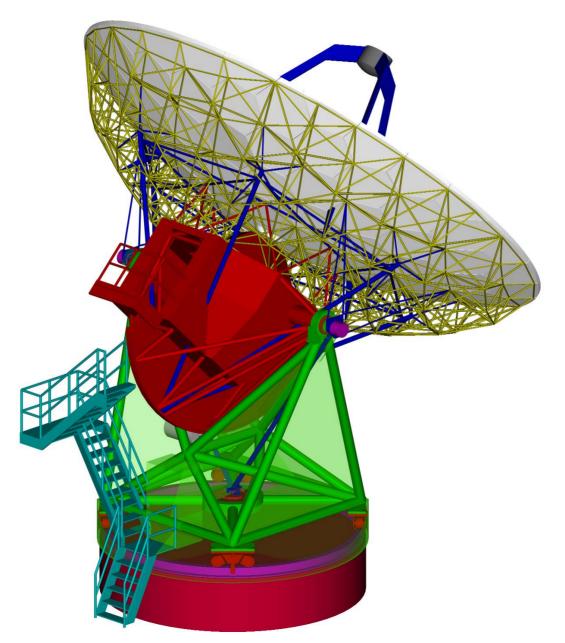
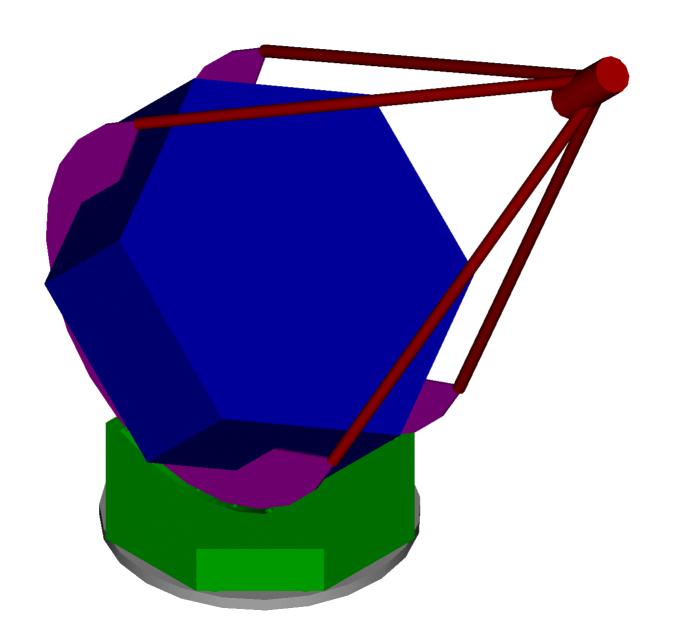


Table I: . Finite element analysis summary for representative load cases.

<u> </u>	D .1	D .1	Б	D 1 .1	1/	1/ 11/00
Case	Path	Path	Pointing	Pointing	1/2	½ WFE
	Change	Error	Change	Error	WFE	after fit
1 Cmarity	494.0	-2.1	0.5	0.6	15.2	9.5
1 Gravity, zenith	494.0	-2.1	0.3	0.0	13.2	9.3
	11 1	7.0	0.1	16.2	21.5	7.0
2 Gravity,	-11.1	-7.2	9.1	16.2	21.5	7.2
horizon	0.0	0.0	0.6	0.1	0.0	0.4
3 Wind, zen.,	0.0	0.0	0.6	0.1	0.3	0.1
X-axis						
4 Wind, zen.,	0.1	0.0	1.1	0.1	0.3	0.1
Y-axis						
5 Wind, hor., X	0.0	0.0	0.3	0.3	0.5	0.2
axis						
6 Wind, hor., Z	81.2	3.3	2.7	0.0	3.7	1.2
axis						
7 Temp., zen.,	-348.0	-29.0	0.0	0.3	6.0	0.7
uniform 10 C						
8 Temp., hor.,	382.0	-15.1	8.3	0.0	6.3	2.0
uniform 10 C						
9 Temp., hor.,	0.0	0.0	1.0	0.1	0.4	0.3
dT/dX=1C/m						
10 Temp., hor.,	93.3	-4.0	0.7	0.4	5.0	0.5
dT/dY=1C/m	75.5	1.0	0.7	0.1	3.0	0.5
11 Temp., hor.,	111.0	-3.9	2.2	0.0	5.0	0.4
$T(R)=.2R[m]^2$	111.0	-3.7	2.2	0.0	3.0	0.4
12 Temp., zen.,	2.2	0.7	1.1	0.1	1.5	0.6
meas. [Error!	۷,۷	0.7	1.1	0.1	1.3	0.0
Bookmark not						
defined.]						


TABLE I. SURFACE ERROR BUDGET

	r 1
Effective surface er	ror [µm]
Backing structure	
Gravity (ideal)	6
Gravity (departure from ideal)	3
Absolute temperature	6
Temperature gradient	5
Wind	4
Subtotal	11.0
Panel and supports	
Manufacturing	10
Absolute temperature	4
Temperature gradient	4
Gravity	5
Wind	5
Aging	3
Panel location in plane	
Panel adjustment perpendicular to plane	3
Subtotal	14.0
Secondary mirror	
Manufacturing	5
Absolute temperature	2
Temperature gradient	2
Gravity	2
Wind	2
Aging	2
Alignment	5
Subtotal	8.4
Surface setting (holography)	
all contributions	10
Subtotal	10.0
Total (rss)	22.1

TABLE I: POINTING ERROR BUDGET

Pointing error [arcsec]		
Gravity (departure from ideal)	0.1	
Wind	0.3	
Absolute temperature	0.3	
Temperature gradient	0.4	
Encoders (24-bit)	0.1	
Metrology (tiltmeters and gap sensors)	0.1	
Reference structure (bearing slop and friction)	0.1	
Total	0.6	

A previous CELT concept

Simple FEA

- Weight
 - Tipping weight 510,000kgm
 - Glass 150,000kgm
- Deflection of 250um p-p
- Remove glass => 176um p-p
- RMS \Rightarrow \sim 40um
- Improved homology expect => ~20um