Atacama Submillimeter Telescope

ISM Polarimetry

C. Darren Dowell (JPL/Caltech) 2003 October 11

Outline

- Sensitivity
- Extended Sources:
 - Magnetic fields confront other forces in the Galaxy.
 - Large-scale magnetic field order in dense ISM of other galaxies
 - Polarization spectrum
- Point Sources:
 - Sgr A*
 - T Tauri stars
 - Blazars: emergence of jets
 - High-z: Just because we can?
- Techniques
- Requirements of telescope

Typical ISM Polarization: 2%

3

Sensitivity Comparison with Existing Facilities

λ (μm)	Atacama vs. CSO	Atacama vs. JCMT	Flux/beam for $\sigma(P) = 0.1\%$ in 10 ⁴ sec
350, pt. src.	70× better		200 mJy
350, ext. src.	10×		200 mJy
850, pt. src.		50×	30 mJy
850, ext. src.		20×	30 mJy

Orion and DR21: Magnetic Fields / Gravity

M17: Magnetic Fields / Stellar Winds

Dotson (1996)

Galactic Center CND: Magnetic Fields / Rotation

Test of Helical Field Model

E

Matthews et al. (2001)

Simulations Out Pace the Observations

Heitsch, Zweibel, & MacLow

SHARC II 350 μm map of the Antennae

Atacama polarization map after 10⁴ sec?

Polarization Spectrum: More Constraints on the Mix of Dust

- No known single grain species will do this.
- Multiple dust components with different polarization efficiencies are required. 12

Sgr A*: Constraints on Accretion at a Few Schwarschild Radii

13

Agol (2000)

T Tauri Stars: Toroidal Fields In Accretion Disks

Tamura et al. (1999)

Outline

- Sensitivity
- Extended Sources:
 - Magnetic fields confront other forces in the Galaxy.
 - Large-scale magnetic field order in dense ISM of other galaxies
 - Polarization spectrum
- Point Sources:
 - Sgr A*
 - T Tauri stars
 - Blazars: emergence of jets
 - High-z: Just because we can?
- Techniques
- Requirements of telescope

Techniques

- Polarization modulation:
 - No strong incentive to improve upon the classic crystal quartz half-wave plate + wire-grid polarizer, except for large detector arrays at $\lambda > 1$ mm. Quartz is transparent enough to be used warm.
- Polarimeter design:
 - The right way: Two detector arrays observing the same field of view in orthogonal polarizations, preceded by half-wave plate
 - Maximum sensitivity, best rejection of atmospheric variations
 - At the cost of twice as many detectors per field of view.
 - Still worth doing: Polarization modulator in front of an array sensing a single polarization
 - Need edge of detector array "off source" to reject sky noise.
 - Use detector "total power" to track transmission variations.

Requirements on Telescope

- Would rather NOT have a radome:
 - JCMT, Goretex: 1%, 3% polarization at 850, 450 μm
- Oblique reflections and dichroics are to be avoided (prior to half-wave plate).
 - K-mirrors are undesirable field rotators since they polarize.
- Some polarimetrists would insist on a mechanical instrument rotator, but this is not essential.
- Avoid equatorial telescopes and the South Pole (no field rotation).
- Is a chopping secondary required for sufficient atmospheric rejection?

Polarization Uncertainty

$$\sigma(P) = \frac{2}{\sqrt{s}} \frac{\sigma(F)}{F}$$
$$\sigma(\theta) \approx \frac{90^{\circ}}{\pi} \frac{\sigma(P)}{P}$$

s = number of polarization states detected

Need photometric signal-to-noise of a few hundred to a thousand.

Extended Sources

5× better than CSO at 350 μm?

 $n \propto \mathcal{E}_{atm}$

 η = Ruze factor

s = number of polarization states detected

$$\varepsilon_{atm}$$
 = atmospheric emissivity

 $\Delta v =$ bandwidth

Extended Sources

- For widely extended sources (nearby galaxies, dark clouds, IR cirrus), we don't necessarily need a big telescope
- Just a <u>big field of view</u>, high aperture efficiency, and a good site.

Point Sources

$$S/N \propto \frac{\eta A \sqrt{s(1-\varepsilon_{atm})} \sqrt{\Delta v}}{\sqrt{\varepsilon_{atm}(1+n)}}$$

30× better than CSO at 350 µm?

 $n \propto \mathcal{E}_{atm}$

 η = Ruze factor

s = number of polarization states detected

$$\varepsilon_{atm}$$
 = atmospheric emissivity

 $\Delta v =$ bandwidth

Evidence for ordered galactic magnetic fields

- Synchrotron emission from very diffuse ISM
- Magnetic fields along spiral arms

Berkhuijsen (1997)

Evidence for an ordered Galactic magnetic field

- Optical polarization samples diffuse ISM.
- Magnetic fields in the plane of the Galaxy.

Evidence for a disordered Galactic magnetic field

• For the dense ISM, the magnetic field component in the plane of the sky is nearly random with respect to the Galactic plane.

Barely-Resolved Sources

- Evolved stars magnetic fields related to bipolar asymmetry?
 - Claimed detection of 850 µm polarization from CRL2688, but weak (0.3%); not aligned with axis (Greaves 2002)
- What about planetary nebulae?