CCAT Instrumentation

Gordon Stacey representing the efforts of many people involved in CCAT instrumentation studies

What is CCAT?

 A 25 m submm telescope that will operate at wavelengths as short as 200 um

- Why 25 m?
 - Matches ALMA continuum sensitivity in short submm
 - Significantly breaks confusion limit of smaller apertures
 - High altitude, smooth surface, large aperture \Rightarrow > 10 times more sensitive than current single dish facilities
- Located in the Atacama desert in northern Chile at very high elevation - 5600 m
 - \Rightarrow much of the time has PWV < 0.5 mm
- Its location enables maximal synergy with ALMA
 - Locates sources for ALMA follow-up
- Takes advantage of rapid growth in submm detector technology to map large regions at high angular resolution

What will we see?

Primary science

- Exploration of the Kuiper Belt
- Star and planetary system formation
- Sunyaev-Zeldovich Effect
- Surveys of star forming galaxies in the early Universe
- These science topics emphasize wide-field imaging – hence our first light instruments will include cameras
- Studies of primordial galaxies requires redshifts
 we also include direct detection spectrometers

Resolving the Origins of the Cosmic Far-infrared Background

50% of the extragalactic background radiation is in the FIR/submm
 Only a fraction the CFIRB has been accounted for with galaxies
 The FIR/submm luminosity function must evolve strongly for *z* > 0.

CCAT, Hershel and ALMA

 $350 \ \mu m$ Simulated maps of the same patch of sky based on *Herschel* number counts

At 450 μm, CCAT and ALMA will have approximately the same mapping speed <u>per beam</u>.

With the 5' FOV first-light camera and <u>~8,500 beams</u>, CCAT' s mapping speed will be ~8,500x higher.

>5σ 850 μm detection, 350 μm nondetections

Baseline CCAT Instrumentation

Three Primary Science Instruments Submillimeter wave camera Near millimeter wave camera Multi-object direct detection spectrometer Z-spec ZEUS/ZEUS-2 Transferred, and future instrumentation Full FoV cameras Heterodyne spectrometers/arrays

 We envision a > 50,000 pixel submm camera at first light

Submm Camera: Summary

- Primary band is 350 μ m ~ 40,000 pixels \Leftrightarrow 5' FoV
- Filter wheel to access 450, 620, (200) μm
 Dichroic splits off a long wavelength 850 μm band
 - Or perhaps more likely we will have an (independent) mm wave camera for 740 μm and longer wavelengths

 At least 10,000 pixels at longer wavelengths
 Advanced Technology Array Camera ATACamera

Submm Camera Decision Tree

The telescope delivers up to 1° FOV – why are we designing to a 5' FOV?

- Science: Initial science deliverable with 5' FOV cameras
- Image Scale: One can not couple the entire 1° FoV into a background limited camera ⇒ smaller sub-systems
- Technology: Current technology suggests 40,000 pixels is a reasonable goal – this delivers Nyquist sampled images over a 5' × 5' FOV at 350 μm

tiling a 30' FOV requires one million pixels at 350 um,

- -- extremely expensive using today's technologies
- Future developments will greatly reduce the costs therefore mega pixel cameras are postponed

Two Designs Considered

- All reflective design
 - Maximizes throughput
 - Minimizes emissivity
 - Off-axis approach leads to BIG (3-4 m class) optics but 5' FoV design not too bad...
- Transmissive design with field lens
 - System is remarkably more compact
 - Throughput and emissivity quite good
- Direct imaging
 - Would be fine at 200 um, over-sampled at longer wavelengths
 - Problems with stray light...

ATACamera

- Cornell Caltech Colorado collaboration
- First light camera composed of sub-cameras
- Dichroic 5' field of view on CCAT
 - 40,000 pixel at 350 μm and 10,000 pixels at 850 μm
- FoV broken into 3 3' "sub" fields (128×128): minimizing both aberrations and window size

Ray-trace

 Spot sizes quite good – circles are Airy disk
 Sub-cameras have Strehl ratios > 90% over nearly entire FoV (centered at angle of 0.07°)

Detectors

Our preliminary design base-lined TES sensed SQUID multiplexed arrays as in SCUBA-2
Workable, within budgets for 40,000 pixel camera
Submm MKID devices are now the preferred option
Considerably less complex architecture that is more readily scalable to large arrays

Considerably less complex read-out electronics as well.

⇒ Considerably less cost

MKID Principles

- Photon detector is incorporated into a superconducting resonator circuit
- Photon absorption causes the frequency and line-width of the resonator to change
 - Frequency domain multiplexing achieved by designing resonators with slightly different resonant frequencies and using a broadband low noise microwave amplifier to read out the array

Array Development at JPL

capacitor

16×16 array of TiN spiral lumped-element pixels 256 pixels coupled to one feedline visible at the top and bottom

Demonstration of TiN far-IR MKID device at 200 μ m illustrating the inductive (frequency shift) and dissipative (resonance width) response to temperature (Peter Day et al.)

Predicted Sensitivity

Table 5: Detector Noise Requirements and System Sensitivity							
Telescope/S	350 µm Band			850 μm Band			
ite –		-			-		
	NEP	NEFD	MDF	NEP	NEFD	MDF	
CSO/Maun	1.E-16	870	29	4.6E-17	72	2.4	
a Kea							
ASTE/Atac	1.3E-16	406	13.5	3.5E-17	57	1.9	
ama							
SPT/South	1.1E-16	249	8.5	3.0E-17	48	1.55	
Pole							
CCAT/Chaj	1.1E-16	22.8	0.78	3.0E-17	7.1	0.23	
nantor -							
Values for O1 transparency, NEP is W Hz ¹² NEFD is mJy, 1 o, 1 sec. MDF is mJy, 4o, 4 hours							

Can detect Milky Way at $z \sim 1$ to 2!

How Many Sources

Table 2: Sources per Square Degree							
Band	CSO	ASTE	SPT	CCAT			
350 µm	340	2060	5180	55600			
4σ(mJy)	29	13.5	8.5	0.78			
CL.	3.5	3.5	3.5	0.3			
850 µm	2430	4150	6290	52000			
4σ(mJy)	2.4	1.9	1.55	0.23			
CL.	2.0	2.0	2.0	0.7			
Confusion limit (C.L.) is 10 beams/source							

 4 hours/pixel, 2000 hour survey – 14° survey in 2 years

Approaches half a million sources/year

Transmillimeter Wave Camera –Sunil Golwala

Low wavelength Camera for CCAT

Antenna-coupled arrays of bolometers

- Can't do 50,000 feed-horns
- Single polarization antenna coupled design leads to a simple way to cover multiple bands with varying pixel sizes
- Nb slot antenna and microstrip limits shortest λ to > 740 um (405 GHz)
- Beam definition achieved with phased array antenna

 Signal detection with either MKIDS or TES devices

Pixel Numerology

- Design driven by desire to keep detector counts reasonable, yet gain substantially in mapping speed over SCUBA-2/MUSIC generation.
- Could increase 740 $\mu m, 870~\mu m$ pixel counts by ${\sim}x4$ more if readouts capable

L	L	L	L		Band GHz (µm)	Δν (GHz)	Pixel Size f·λ	Number of Spatial Pixels
					150 (2000)	30	1.15	16 tiles × 256 = 4096
L	п	п	L		220 (1400)	40	1.6	16 tiles × 256 = 4096
L	н	н	L		275 (1100)	50	2.1	16 tiles × 256 = 4096
			L		350 (870)	40	0.7 2.8	4 tiles × 4096 = 16384 12 tiles × 256 = 3072
L	LL	L		L	405 (740)	30	0.8 3.2	4 tiles × 4096 = 16384 12 tiles × 256 = 3072
← ▶			Total			51,200 detectors		
20 arcmin L = low-resolution tile			At f/2, 1 tile is approximately 74 mm across, a good fit for 4" wafer processing. Focal plane is 30 cm across, a "reasonable" size.					

H = high-resolution tile

Sunil Golwala

Direct Detection Spectrometers

 For broad-band spectroscopy of broad, faint lines, direct detection spectrometers are the instruments of choice.

- Detectors are not subject to the quantum noise limit and are now sufficiently sensitive to ensure background limited performance at high resolving powers
- Very large bandwidths $\Delta v \sim v$ are possible
- Need to consider 3 types of direct detection spectrometers
 - Fourier Transform spectrometers: naturally broad band
 - Fabry-Perot interferometers: high sensitivity, but must scan
 - Grating spectrometers: spectral multiplexing monochrometer
 Free space spectrometers
 - Waveguide spectrometers
 - Niche for all systems: here we focus on grating spectrometers since we are interested in maximizing point source sensitivity

Ultra-compact approach: WaFIRS spectrometer

True broadband spectroscopy in the submillimeter: Z-Spec, a 1st order grating covering 190-305 GHz.

CCAT View of the Universe 13 Nov 2010

Matt Bradford

Z-Spec as a Redshift Engine

Broad bandwidth is very useful for determining redshifts of submm galaxies Observed (redshifted) spacing between CO rotational lines given by: $\Delta v = 115 \, \text{GHz} / (1+z)$

Lupu et al. 2010

Beyond CO

The Redshift (z) and Early Universe Spectrometer: ZEUS

S. Hailey-Dunsheath Cornell PhD 2009
"Free-Space" submm (650 and 850 GHz) grating spectrometer ◊R = λ/Δλ ~ 1000 ◊ BW ~ 20 GHz ◊ T_{rec}(SSB) < 40 K
ZEUS on CSO for several years – single beam on the sky
Upgrade to ZEUS-2 a

5 color (200, 230, 350, 450, 610 μm bands);
 40 GHz Bandwidth \$\\$10, 9, & 5 beam system

ZEUS-2

Design Choices

Choose $R = \lambda \Delta \lambda \sim 1000$ optimized for detection of extragalactic lines Near diffraction limit: Maximizes sensitivity to point sources Minimizes grating size for a given R Long slit in ZEUS-2 Spatial multiplexing Correlated noise removal for point sources Choose to operate in n = 2, 3, 4, 5, 9 orders which covers the 890, 610,

450, 350 and 200 μm

windows respectively

ZEUS spectral coverage superposed on Mauna Kea windows on an excellent night

ZEUS-2 Traces [CII] Cooling

158 um [CII] line is dominant coolant of neutral ISM ZEUS can detect [CII] at z ~ 1 to 2 characterizing star formation in galaxies at the historic peak of star formation in the Universe ZEUS provides a unique opportunity to explore this epoch through the [CII] line Approximately 40% of the submm galaxy population has redshifts such that the [CII] line falls in the 350 (z ~ 1) or 450 ($z\sim2$) μ m windows

With ZEUS-2 on CSO and APEX we can extend these studies from z >4 to 0.25 -tracing the history of star formation from 12 Gyr ago, through its peak 10 Gyr ago to the present epoch

Spectral Imaging Capabilities

- Astrophysics
 - [CI] line ratio: Strong constraints on T
 - ¹³CO(6-5) line: Strong constraints on CO opacity
 - [NII] line: Cooling of ionized gas, and fraction of [CII] from ionized media
 - Mapping Advantages
 - Spatial registration "perfect"
 - Corrections for telluric transmission coupled
 - Expected SNR for the five lines comparable

A Long Slit Free Space Spectrometer ✓ ZEUS-2 is in 5th order at 350 um - BW ~ 8% \checkmark RP~1000 \Rightarrow 20 cm collimated beam \Rightarrow 0.6 m dewar Could build a 1st order free space grating spectrometer – BW 160% \diamond RP~1000 \Rightarrow 60 cm collimated beam \Rightarrow 1.5 to 1.8 m dewar Advantages

- Flat facal plan
 - Flat focal plane
 - Transmits both polarizations
 - Beams "dense-packed" but readily adapted to multiobject spectroscopy

Multi-Object Spectrometers

- Free-space spectrometers like ZEUS-2 are trivially made into 1 (or 2) - d imaging systems, so it naturally becomes a multi-object spectrometer if we can "pipe" the light in.
- If configured in one band (say 350/450 μm), then the usable FoV of ZEUS-2 is > 20 beams
- To avoid source confusion, could configure with 10 feeds
- Z-Spec's modularity also lends itself well to multi-beam configurations through stacking of the planar waveguides.

Periscope based Multi-Object Spectrometer

 Useful for observations of sources which have a low spatial density on the sky

Patrol regions over the focal plane assigned to each receiver

Low transmission losses since only four reflections

Confusion \Rightarrow [CII] = FIR **Continuum Detection Limits** ◆ ZEUS Survey of 24 – z ~ 1 to 2 galaxies shows [CII]/ FIR continuum ~ 0.2% Line/continuum ~ 10:1 CCAT confusion limit: 1 mJy \Rightarrow 10 mJy in line × 1.9 THz/1000/(1+z) or 1×10^{-19} W/m² – easily detectable (10 σ /4hrs) with **ZEUS – like spectrometers on CCAT** An image slicer grating (IFU) spectrometer might well be quite useful - sources are crowded

Is CCAT Spectroscopy Really Necessary?

CCAT will be the source finder for ALMA
 Detect sources with CCAT continuum

- Detect sources and redshifts in spectral lines with CCAT
- Spatially (and spectrally) resolve lines with ALMA
- CCAT spectrometers are competitive for line searches
 - Transparency and dish surface wins up to 2
 - System temperature wins a factor of 2 to 3
 - Bandwidth: 10 settings vs. 1 setting per window
 - 25 m dish vs. 12 m wins a factor of 4
 - ∴ CCAT is equivalent to 2*2.5*4 = 20 antennas ⇒ takes (64/20)² = 10 times longer for CCAT, but CCAT covers entire band so it comes out even

But – CCAT will have multi-object spectrometers!

Summary

CCAT's facility first light instruments will consist of:

- Submm camera with > 50,000 pixels covering > 5'
 FoV
- Mm-wave camera with > 50,000 pixels covering ~ 20' FoV
- Multi-object broad band direct detection spectrometers

In addition we expect other "contributions" including

- Heterodyne receivers and arrays
- Specialize direct detection spectrometers (e.g. IFU, FPI)
- Polarimeters